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Abstract
Inthe contextofthedesignofdigital fil tersmany re search hasbeen done tofacil i tate
their com pu tation. The Pascal matrix recently de fined in (Biolkova and Biolek,
1999) has proved its util ity in this field. In this pa per we sum ma rize the di rect
trans form from the lowpass con tin u ous-time trans fer func tion H(s) to the dis-
crete-time H(z) of the fol low ing main tree types of dig i tal fil ters: lowpass, highpass
andbandpass. Analter nativerepresentationoftheoriginal bandpass Pascal matrix
isdevelopedinthispaperthatper mitstoconvertsystematically the lowpass
continuous-time prototype tothediscrete-time bandpass trans fer func tion. We also
consider the inverse trans for mation from the dis crete-time do main to the con tin u-
ousone and we show that the in verse trans for ma tion iseas ily ob tained as the de ter-
mi nant of the sys tem need not to be com puted. Sev eral numericalexamplesil lus-
trate the prac ti cal uti li za tion of this tech nique.

Keywords:Filterdesign,s-ztransformation, Pascalmatrix, digitalfil ter designtools.

Resumen

En el contexto del disefio de filtros digitales se ha desarrollado mucha
investigacion para facilitar su célculo. La matriz de Pascal definida re-
cientemente (Biolkova and Biolek, 1999) ha probado su utilidad en este campo.
En este articulo se hace una sintesis de la transformacién directa a partir de la
funcion de transferencia pasa-bajas en tiempo continuo H(s) para obtener la de
tiempo discreto H(z) de cada uno de los tres tipos principales de filtros
digitales: pasa-bajas, pasa-altas y pasa-banda. También se desarrolla una
representacion alternativa de la matriz de Pascal pasa-banda original, que
permite la conversién sistematica de un prototipo pasa-bajas en tiempo
continuo a la funcién de transferencia pasa-banda en tiempo discreto. Adi-
cionalmente se considera la transformacion inversa a partir del dominio de
tiempo discreto, al de tiempo continuo y se demuestra que esta trans-
formacion inversa es facil de calcular, dado que no es necesario obtener el
determinante del sistema. Varios ejemplos numéricos ilustran la utilizacién
préctica de esta técnica.

Descriptores: Disefio de filtros, transformaciones s-z, matriz de Pascal,
herramientas para el disefio de filtros digitales.
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Prac tical Design of Digital Filters Using the Pascal Matrix

Introduction

A large number of procedures are available
for designing digital filters (Parks and
Burrus, 1987); (Antoniou, 1993). Many of
them transform a given analog filter into an
equivalent digital filter. The digital filter
design process begins with the synthesis or
specification of the filter transfer function. A
signal x(t) presented to a filter characterized
by its impulse response h(t) produces an
output y(t) given by the convolutiony(t)=x(t)
*h(t) or, if using the continuous-time trans-
forms of the signals, by Y(s)=X(s)H(s). Then
the continuous-time circuit of a filter is

completely described by the transfer fun-
ction:

_A, tAS+HAS LA S
B, +B,;s+B,s’+..+B s"

H(s) (1)

From this equation the vectors A and B
representing respectively the coefficients of
the numerator and denominator can be
defined as:

A=(A A A,,... A,)

_ )
B=(8,B,,B,, ....B,)

where, A;and B; are real coefficients.

In the discrete-time domain the z
transforms of the signals are used, and a
digital filter is characterized by the transfer

function:

a, +a,z "t +a,z +. 4,z "

bo +b1z " +byz 4. 4bz”

@)

H@)=

n

With real coefficientsa; and b;.

The problem of the systematic conversion
from the continuous-time prototype transfer
function H(s)to its discrete-time version H(z)

is addressed in this paper considering three
types of conversions: lowpass-to-lowpass, low-
pass-to-highpass and lowpass-to-bandpass. The
original Pascal matrix (Biolkova and Biolek,
1999) is used to achieve this systematization,
and an alternative representation of the ori-
ginal Pascal matrix is developed in this paper
to rich the lowpass-to-bandpass conversion.

The remainder of this paper is organized
as follows. Section Il describes the lowpass-
to-lowpass conversion. Section Il adapts the
previous development to the lowpass-to-
highpass case. Section IV main contribution of
this paper, develops an alternative represen-
tation of the original bandpass Pascal matrix
which allows the lowpass-to-bandpass con-
version. Section V presents the inverse
conversion from the discrete-time domain to
the continuous-time. In Section VI we give
examples to illustrate all the cases.

Lowpass-to-lowpass Transformation

For lowpass filters the digital transfer
function H(z) can be obtained from the
continuous-time prototype (1) using the
bilinear s-z transformation (Parks and
Burrus, 1987):

_z-1
s-cZ ") (4)
where
f
c=ootPt (5)

S

and the constants f, and f, represent the
lowpass corner and sampling frequencies,

respectively.

From the transfer function (3), we define
the vectors a and b whose elements are
respectively the coefficients of the numerator
and denominator (Klein, 1976):
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[«5)

=(ay,a;,8,,...,4,)

- (6)
b =(by.b, ,b,,...,b,)

In order to express the numerator vectors
a in terms of A and denominator vectors b in
terms of B, we replace the variable sin (1) by
(4) then comparing the numerators and the
denominators of the resulting transfer func-

tions in z we can identify the coefficients by
equating the coefficients of the like powers inz

Thus, for n=2 and m=2 we obtain the
following expression:

H(Z)_aO +a1Z +a22
b, +b,z" +b,z"?

_A FACHALT+ZIA, - 2AC7 )+
B, +Bic+ By +2 (2B, - 2B,c” +

(7)

4272 (Ay - AC+ALC)
+27%(By - Bic+B,¢)

From the numerators the coefficients, a;,
i=0,1,2 are easily identified and re-written in
acquire the following matrix equation

éaou é 1 lu éA CI

é U_6 u- é

%\1@—% 0 -2 ch (8)
.5 & -1 19 @Az

In a similar manner, a matrix equation can

be obtained for the coefficients, b;,i=0,1,2 of the
denominator vector b.

Using a more compact representation both
equations can be written as follows:

a=Pwr A
)

b= E(L?J "B
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where |3(L”3> is the lowpass Pascal matrix
defined_in_(Poeniika et al., 2002) and the
vectors A', B' are represented by

A=A, ACALC .., A c™
(10)
=(B,,B,,B,c*,..,B, ")

As demonstrated in (Poer}m ka et al., 2002)
the computation of the PLP matrix can be

done in a systematic form. For this we
consider the classical Pascal Triangle

1 n=0
1 1 n=1 (11)
1 2 1 n=2
1 3 3 1 n=3

1 4 6 4 1 n=4
1 5 10 10 5 1n=5

Obs

erve, that the coefficients of base n=2 create
the last column in the lowpass Pascal matrix of
(8) with the exception of the elements in the
even rows which have negative values. We
have concluded that the lowpass Pascal matrix
can be formed by taking into account the
following rules (Biolkova and Biolek, 1999);
(Pham and Psenicka, 1985).

- In the first row of the Pascal
matrix all the elements must be equal to
one.

- The elements of the last column
can be computed using:

n!

e s ey WP
where
i=1,2,...,n+1
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The remaining elements P;; of the lowpass
Pascal matrix can be determined using the
following equation:

P. =P, +P

ij i-1,j i-1,j+1

+P

i, j+1
where

i=2,34,...,n,n+1
(13)
j=n,n-1,n-2,..21

Without lost of generality, using letters of
the alphabet in the order shown below we
can identify the elements of thelowpass Pascal

matrix forn=4:

@ =1 b=1 c=1 d=1 -e=1

€i i h g f=-4l
a? 2 2 2 k=6 (14)
e 9 ? ? ? =-40
g? 22 9 p=15

where the elements denoted g, h, i, and j can
be obtained using the next set of equations:

g=d+e+f=-2; h=c+d+g=0
(15)
i=b+c+h=2; j=a+b+i=4

Then the lowpass Pascal matrix for the
particular case ofn=4is finally given by:

& 1 1 1 1y
& 2 0 -2 -40

pi :ge 0 -2 0 6 ﬂ (16)
& -2 0 2 -4l
g -1 1 -1 1§

Lowpass-to-highpass
Transformation

In this second case, in order to transform the
lowpass transfer function to the discrete

highpass transfer function H(z), we substitute
the variables by 1/sin (4). Thus,

s=kZ*1
z-1

with

k =tan pf.

S

(17)

where f_represents the cut-off frequency of

the highpass and f, the sampling frequency.
Following the same process, substituting (17)
into (1) and comparing the numerator with

(3) for n=3 and m=3, we can obtain:

-1 -2
a,+a,z ' +a,z

+a,2°%=
A, +Ak +AKY +A K° +
+271(- 3A, - Ak+AKZ+3AKY)+ (18)
7 7 (BAy- Ak- Ak’ +3Ak°) +
4270 (- A, +AK - ALK +AK)

Again, equating the coefficients of the like
powers in z, we obtain the following matrix
equation

o €1 1 1 10 éA D
u A i A s
2y $3 -1 1 3U Caxd
Q.Y=6 et a (19
g0 es -1 -1 30 Ak
a s 1 Qe L

g1 1 -1 1§ 8ak]

This equation can be written in the
compact form

a =P\ A" (20)

where p‘ZL is a variant of a Pascal matrix
which corresponds to the highpass filter in
which the first row elements are all equal to
one, and the elements of the first column can
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be obtained using (12). The remaining ele-
ments P, can be determined using the
following expression (Poenifkaet al., 2002):

P =Pii1 tPiyj 10 TPy
Where i=23,..,n+l (21)
j=23,...,n+l

A similar development can be done for the
denominator vectorb .

Lowpass-to-bandpass
Transformation

The latest case considered in this paper
shows how to obtain a discrete bandpass

filter (Konopacki, 2005) characterized by the
discrete-time transfer function H(z)

-1 -2 -n
_a,ta,z +a,z +.4a,.7

-1 -2 -n
b, +0b,z  +b,z "+..4b z

H(z) (22)

which also has real coefficients a; and b;. As
previously this transfer function can be
obtained from the continuous one (1) by s-z
transformation. The bandpass filter can be
seen as a superposition of a lowpass filter and
a highpass filter (Rabiner and Gold, 1975).
Thus, the s-z transformation that applies is
(Bose, 1985):

s=¢2-1z2+1
z+1 z-1

f (23)
where  c=cot(p f—l) k =tan(p'T1)

S

f, and f, represent the upper and lower
frequencies of the bandpass filter respec-
tively, and f, the sampling frequency.

In a similar manner from (22), we define
the coefficient vectorsa andb:

Vol.VIIl No.3 -julio-septiembre- 2007

a(aO ,al,az,...,an)
(24)

b(o b1 ,bs,....b,)

In order to obtain the coefficientsa; and b;,
(i=01,..,n) knowing the continuous time
representation vectors A and B, we must first
substitute (23) into (1) then compare the
numerator and denominator of the resulting
transfer function with the corresponding
onesin (22).

For example without lost of generalization
we take m=1 in (1), due to the high order
terms appearing in the transformation (23), a

n=2 must taken in (22) resulting in:

7) a,+a,z +a,z’
—_ 0 1 2 —

Bz) b,+bz*'+b,z?

Hz)=

Ao+ Aic+Ak +77 1 (2 Ak - 2Ac) + (25)
B +Bc+Bk +z'(2Bk- 2Bc) +

27 (- A + ACHAK)
+7 *(- B, + B,c +B k)

and the following matrix equation:

éaol‘:él 1 1@ ?Alcl}l
G, L2 o 2U€p U (26)
e e ue u
@, Bl -1 1 gAkg

A similar equation is obtained for the
denominator vector b. Both equations can be

represented in the following compact form:
@7)

where Pw is the so called bandpass Pascal
matrix. This matrix transforms the norma-
lized lowpass to bandpass transfer function.
We have named this matrix the bandpass
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Pascal matrix (Psenicka and Garcia-Ugalde,
2004) because the matrices of all orders have
in the first column the coefficients of the base
of a Pascal triangle (11) with the exception of
elements in even rows, which have negative
signs. In this example the vectors A and B"
are represented respectively by

A =(Ac, Ay, AK)
(28)

B'" =(B,c, By, B,K)

In order to achieve an alternative repre-
sentation of the original bandpass Pascal
matrix, without lost of generality let us
consider the case of order m=2 and again
because of the high order terms appearing in
the transformation (23), a n=4 must taken.
The matrix representation of a P> " A is
given by

éA,c° U

G0 61 1 Lo lu gl
?13 €4 -2 2 4 oV 3% u
é u é U
@zu:éG 0 -2 6 -20 éAlk u
%SL:I ?_4 2 - 4 Ol:I e zu
e u e eAk” 1
5y a1l -1 1 -11 14 £e¢ U
@.a e B&Azckg

(29)

Note from this latest example that the
matrix is rectangular and it will be the
general case in a lowpass-to-bandpass trans-
formation for values of m=2 or higher. In
order to use the same rules as in the previous
section for the lowpass-to-highpass transfor-
mation (which always has a square matrix)
we decompose this rectangular matrix into
the concatenation of two matrices as shown
in the following equation

€py
&

U= &% [Ree U 30
6 & p (30)

In this equation the matrix See is square and
its computation is exactly the same as that
used in the lowpass-to-highpass transforma-
tion, which means: all the terms in the first
column can be obtained using (12) and the
remaining elements S; can be established
using the following expression (Poenifka et

al, 2002):

Sy =S ;1 tSiy 1 TS
Where i=23,..,n+1 (31)
j=23..,n+1

On the other hand the matrix ﬁ:sp in (30) is
rectangular with n+l rows. A priori the
number of columns has to be computed by
counting the number of elements different to
1 included in the upper triangle from base m
of the Pascal triangle (11). To illustrate these
values we summarize in table 1 the number
of columns col of matrix Rer for different m
and n parameter values.

Table 1. Number of columns col in the matrix
Rep

col

5w N [3

n
4
6
8

Once the elements of matrix Ssr are
known the columns of Re can be derived
directly. Let us consider the case m=2, the
lonely column of ﬁgp is equal to the central
column of §T3p (Poenifka and Garcia-Ugalde,
2004). In this paper we call this column the
pivot because for m=2 there is only one
element different to 1 in the upper triangle
from base m in the Pascal triangle and its
position corresponds to a central position in
the triangle. For m=3, as shown in table 1,
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there are three columns in Enap one is alsothe
pivot because again it is equal to the central
column of Ser and the two others are the
columns on the right of the pivot and on the
left of it. Also the reason is because for m=3
there are three elements different to one in
the upper trian- gle from base m and their
positions corres- pond to a central position in
the triangle plus its nearest neighbors (right
and left). To illustrate the previous structure
we show the resultingp » matrix for vectory
and pa- rameters m=3, n=6.

e 101 01 1011 1 1 1y
gl - .
5'q €6 -4 -2 0 2 4 6 0 2 -20
al ~ .
e'g €5 5 -1 -3 -1 5 15 -3 -1 -10
e20-620 0 4 0 -4 0 20 0 -4 49

A - @ u
€50 J15 .5 -1 3 -1-5 15 3 -1 -1/
&,

éa5ué-64-202-4602-20
81 -1 1 -1 1 -1 1 -1 1 1§
&,

AC U

Ge 8

Ac U

é a

o g

Ak

e a 32

Ak 2

A 3

é 2 3

&A:ck

8A,ck2 U

é a

BA,C’kf

A similar expression can be obtained for
vectorb.

Inverse Transformation from H(z)
to H(s)

The inverse Pascal matrix is defined by the
following equation (Klein, 1976):

Vol.VIIl No.3 -julio-septiembre- 2007

P =2 " P (33)

In all cases using the inverse Pascal matrix
the continuous-time transfer function H(s)
can be obtained from the transfer matrix of
the discrete-time structure H(z). The advan-
tage of using this equation is that to compute
the inverse Pascal matrix the determinant of
the system is not necessary.

For example consider the lowpass case, let
H(z) be the transfer function of the discrete
structure that works at the corner frequency
f, =3400[ Hz] and sampling frequency
f, =16000 [Hz]

0.27 +0464z7 ' +022727
H@z) = < - (34)
1- 0276z +0185z

First it is necessary to calculate the cons-
tant c of the bilinear transform (1):

203400 4
- - 35
c Ca816oa)g 126849 (35)

Then the transfer function coefficients of
the analog circuit will be calculated as
follows:

Ao U 1§1 1 10027y &7
Ac U="% 0 -2Ua54U=%0 U (36)
€ ug4é ué ua é a
Ay gl -1 12275 @0 g

B 0 & 1 1 0 &2270
&c 0=18& o 208 (275U =&a070 (37)
e U 4 € ue u e u
8,0 6l -1 10185 g @3654
and

Ao =0227 As =00 Az =00

B, =0227 B, =0321 B, =0227
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The transfer function of the corresponding
analog filter is the Butterworth transfer
function of the second order:
H(s)= : 0227 _
0227s" +0.321s +0227

1
T2 4141425 +1

NumericalExamples

In these examples we shall transform a

lowpass transfer function H(s) to lowpass
and highpass transfer functions H(z) using
the features specified by:

c=k =1, f, =8000[HZ],
(38)
s? +5153

092s’ +2781s” +4 3445+ 5153

H(9) =

Trans for mation LP-to-LP from s to
the z domain

The transfer function coefficients a . ,b., for

i=0,1,2,3 can then be obtained using the
equations:

@t & 1 1 10 éA U
U 8 1 -1 -3U fAc Y
e u=e ? ZL,J:
@0 8 -1 -1 33 éAc a
5 0 & |8, 30
.0 & -1 1 -1f Ay

(39)

d 1 1 1y &153y

_g 1 -1 -3, 00 o

"8 -1 -1 35 40 g

u

: u

o & 1 1 1y & 0
U & 1 -1 -3u Bel
gli=2 a € ,u=
&0 8 -1 -1 30 &cu
24 8 -1 1 -1 Bef
(40)

g 1 1 1y é5153y

_Zs 1 -1 33 24.3443

&8 -1 -1 33 e278ly

& -1 1 -10 &o920ll
given
a, =6153,a,=144% ,a, =14 459,a , =6153
b, =13207,b, =14.285,b, =11121,b, =2661
The transfer function H(z) takes the form

H(z)=

_04658+1.09482 " 4109487 + 046682 °
1+107782 " +0.84227% +0.20157°

(41)

For this equation the corresponding mag-
nitude and phase frequency responses of the
digital lowpass filter are shown in Figure 1.

Ingenieria Investigacion y Tecnologia, ISSN 2594-0732
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Amplituce spectnirm

Phaze spectnim

[rac]
=

Figure 1. Magni tude and phase frequency responses of the lowpass filter

Transformation LP-to-HP from s to the
z domain

Using the Pascal matrix |5(.;°’3. we can trans-
form the lowpass transfer function (38) to the
highpass transfer function H(z) using the

following equations:

é,u é1 1
& 0 & 4
=g 3 1
g,q &3 -1
&sff &1 1
1 1 1
€3 -1 1
=-e
63 -1 -1
&1 1 -1

10 A, U
u é u
3 vk o
3 A k*a
q é 30
1t Ask g
(42)
6153
o U
e u
a0
90

o
N
[

1
w

-

1
[EEN

RP> BOLED @
w N
co.ooo o
I
O D D O
w

6l 1 1
8

_g3 -1 1
a3 -1 -1
€1 1 -1

1

34
u

3
14

153y
&, 2440
% 344
2781
&.9294

e X &

éB,
Bk
e
éBk?

[y e e g

O

(43)

The coefficients of the highpass transfer

function are:

do 26153,

a2 =14.459,

a1 =-14.459

as =6153

bo =13207, b: =-14.235
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b, =11121, b; =-2.661

and the highpass transfer function is given by
(44). The magnitude and phase frequency
responses of the digital highpass filter are
shown in Figure 2.

H(z)=
(44)

_04658 - 10948z +10%8z° - 046582°
1-10778z"" +0842z% - 0.0152

Trans for ma tion LP-to-BP from s to the z
domain

In this example we transform a Butterworth
lowpass transfer function H(s) to a bandpass
transfer function H(z) using the features
specified by:

0 1 2 3
frecguency

f, =300 [Hz], f., =1000[Hz]

f, =800[Hz] (45)

1
H(s) =5———
(s) § ++/25+1

In order to transform the lowpass analog
function (45) into the digital bandpass

function, we must first determine the transfer
function coefficients a b, for i=01,..,4
which can be obtained using the matrix
equations for current values:

3000

5
c=oot +=04142
¢ 8000 g
1000 g
k=tng- "~ 9=04142
¢ 8000 4
Fhase spectrum
4
3 \
2 \
1 \'\- '-.\-
l.I\L'. \\"\._
To | s
-
2
3
4

Figure 2. Magni tude and phase frequency responses of the highpass filter
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7 2~
@uel 1 1 1 1 14 2::2 u
Zalg 2-4 2 0 2 4 0 gAO u
. u
§a2@=§6 0 -2 0 6 -2y ‘?Alk r
ga3g 2-4 2 0 -2 4 039 , U
2.4 61 -1 1 -11 1§ g=f o
gAZCkU
(46)
el 1 1 1 1 1y iﬂ d @
€4 -2 0 2 4 00eqg 9 U
é u,ag é._d
=g6 0 -2 6 -2q éou:érzu
€4 2 0 -2 4 oYeu U
e u &y & u
Bl -1 1 -11 14 o d g
u
7 2
@0 61 1 11 1y SEE ﬂ
Zolﬂ €4 -2 2 4 oY &'
e u, é y
&,0=66 0 -2 0 6 -2 ggk =
‘?033 2-4 2 0 -2 4 og?kz@
< < eB, u
@0 61 -1 1 -11 13 o2k d
%BZCKG
(47)
61 1 1 1 1 1y gi&:ﬂ 88579
4 2 0 2 4 oleT 0D
&6 0 -2 0 6 -2g’%5%83=é0.627
&y 2 24 0le 0 d
g1 -1 11 1y 20U &gy
93431

The transfer function of the bandpass filter
is given by

H(z)=
(48)
_ 03409 - 0699827 +0.34%z"*

1- 021%z2 +01801z*

Finally, a more complicated example is pre-
sented, in which the lowpass transfer func-
tion H(s) contains two transfer functions
H, (s)and H, (9 and is transformed into the
whole system bandpass transfer function H(z)

for f, =3000[Hz], f., =1000[Hz], f. =8000[Hz]
HE) =H.(s)” Hy(s)=
(49)
0123 s2 +02897
$+03497 s +00492s +02492

In order to transform the lowpass analog
function (49) into the digital bandpass
function, we proceed the s-z transformation
for each of these two transfer functions, we
must first establish the coefficients a ,,b,, for
i=0,1,2 for the first function H,(z) and then
the coefficients a . ,b, ,for i=0,1,2,....4 for the
second one H, (z) This computation can be
obtained using the matrix equations pre-
viously defined for current values:

c =oot§wﬂ 9=0.4142

e 8000 gy
k =Ian<?mﬂ9=0.4142

e 8000 g
é,u él 1 1 éAcu
galL,J:?' 2 0 2L,j, ?Ao U
e "u e u e u
@.0 81 -1 1g eAKkg

(50)
él 1 1o & u &123 |
=%2 0 2Y %13d=p U
e u e u e u
gl -1 15 @ § & 0123
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dou é1 1 1y é&Bicy 61 1 1 1 1 1§ Q1716
%, U=%2 0 2U S U= A o 0204Y
eta é ueku €4 -2 0 2 4 o0U & a
4 8l -1 14 A _¢€ u, @2492(_
@0 & b eBkg =a6 0 -2 0 6 -2 % H_
(51) &4 2 0 -2 4 00 0204y
el 1 1lg #4142y d1Bly 8 0 Q17164
_é u- u_ u gl -1 1 -1 1 1 = ;
=€2 0 2 3497Y9=% e i
é G ? u e G g13431H
gl -1 1y §41424 @487y
&.9763
éo a
A c? G e
el 101 1 1 1y Sﬁzz i = 87461 (53)
132-4-202408551 v D ﬂ
066 0 -2 0 6 -2§ g:fk i D46
U €4 2 0 -24 oUer 0
H 81 101 -1 1 15 eAk” U The whole system transfer function in z of
! ?AzCkH the bandpass filter is given in (54) and the
corresponding magnitude and phase fre-
guency responses are shown in Figure 3.
; @ 1716y ,
el 1 1 1 1 1u & 0 HZz)=H,(@z)" H,@z)=
é 0 & A
é—4 -2 0 2 40 U e 2897L'J .
DR SE S
€4 2 4 08¢ G Arer
e ’
g1 -1 101 01§ g34313 0976+ 079862 +09767°*
R 0.9763+ 087462 +089467 °
@976 |
& a
g
=®7936( (52)
® U
e a
@976 §
éB,c’ U
o061 1 1 1 1 1o & g
iey 2 4 00 &° q
0 a -
4266 0 -2 6 -20 Sg’k =
38 €4 2 -2 4 o?élkzﬂ
Uy € éB k" U
1 -1 -1 1 1 A 0
4 € g ngCkH
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Figure 3. Magni tude and phase frequency responses of the Cauer bandpass filter.

Conclusions

The Pascal matrix is very useful in the context
of the design of digital filters. Transforma-
tions can easily be done from the analog
prototype lowpass transfer function H(s) to
the discrete transfer function H(z) to obtain
one of the main three types of digital filters:
lowpass, highpass and bandpass. The inverse
transformation from discrete to analog is
very easy to achieve as well because we do
not need to compute the determinant of the
system. In this paper we have summarized all
types of direct transformations and illustrate
their use with several numerical examples.
An alternative representation of the original
bandpass Pascal matrix has been presented
for the systematic computation of the bandpass
Pascal matrix.

Acknowledgements

This research was supported by CONACyYT
Meéxico, project 41069-Y and DGAPA-UNAM,
project IN101305.

References

Antoniou A. (1993). Digital Filters: Analy-
sis, Design, and Applications. McGraw-
Hill, New York, USA.

Vol.VIIl No.3 -julio-septiembre- 2007

Biolkova V. and Biolek D. (1999). Genera-
lized Pascal Matrix of First Order s-z.
Transforms. ICECS, Pafos, Cyprus, Vol.
2, pp. 929-931, September.

Bose N.K. (1985). Digital Filters Theory and
Applications. Elsevier Science Pu-
blishing Co., Inc., Amsterdam, The
Netherlands.

Klein W. (1976). Finite Systemtheorie. B.G.
Teubner Studienbicher, Stuttgart.

Konopacki J. (2005). The frequency Trans-
formation by Matrix Operationansits
Application in iir Filters Design. IEEE
Signal Processing Letters, Vol. 12, No. 1,
pp. 5-8, January.

Parks T.W. and Burrus C. (1987). Digital
Filter Design. John Willey and Sons,
Inc., New York, USA.

Pham Khac di and Poenifka B. (1985).
Transfer Function Computation Using
Pascal Matrix. Electronic Horizon—
Praha, Vol 46-7, pp. 348-350.

Poenifka B. and Garcia-Ugalde F. (2004).
Z-transform  from Lowpass to
Bandpass by Pascal Matrix. IEEE Sig-
nal Processing Letters, Vol. 11, No. 2, pp.
282-284, February.

Poenifka B., Garcia-Ugalde F. and
Herrera-Camacho A. (2002). Z-trans-
fromation from Lowpass to Lowpass and
Highpass Transfer Function. IEEE Signal

209


http://dx.doi.org/10.22201/fi.25940732e.2007.08n3.016

DOI: http://dx.doi.org/10.22201/£i.25940732¢.2007.08n3.016

Prac tical Design of Digital Filters Using the Pascal Matrix

Processing Letters, Vol. 9, No. 11, pp.
368-370, November.

Rabiner R. and Gold B. (1975). Theory and
Applicationsof Digital Signal Processing.
Prentice-Hall, New Jersey, USA.

Suggesting Biography

Bellanger M. (2000). Digital Processing of
Signals, Theory and Practice. John
Willey and Sons, Inc., Chichester, UK.

Manolakis D.G. and Proakis J.G. (1996).
Digital Signal Processing: Principles,

Algorithms, and Applications. Prentice-
Hall, New Jersey, USA.

Mitra S.K. and Kaiser J.F. (1993). Hand-
book of Digital Signal Processing. John
Willey and Sons, Inc., New York, USA.

Oppenheim A.V. and Schafer R.W. (1975).
Digital Signal Processing. Prentice-Hall,
New Jersey, USA.

Porat B. (2000). A Course in Digital Signal
Processing. John Willey and Sons, Inc.,
New York, USA.

Rorabaugh C.B. (1993).
Designer’s Handbook.

Digital Filter
McGraw-Hill,

New York, USA.

Semblanza de los autores

Bohumil PSenicka. Was born in Prague on April 15, 1933. He received the B.S. degree from Czech Tech nical Univer sity,

Prague, in 1962, and the M.S. and Ph.D. degrees from Czech Tech nical Univer sity, Prague, in 1967 and 1972
respec tively. In 1993 he joined the Universidad Nacional Auténoma de México, Facultad de Ingenieria, where he
iscurrently afull-time professor inthe Depart mentof Telecom mu nication Engineering. His research inter ests are
Digital Signal Processing, Analog and Digital Filter Theory, and Applications of Microprocessors in
Telecommunications.

Francisco Garcia-Ugalde. Obtained his Bach elor in 1977 in Commu ni ca tions, Elec tronics and Control Engi neering

from Universidad Nacional Autébnoma de México. His Dipldéme d’Ingénieur in 1980 from SUPELEC France,
and his PhD in 1982 in Infor ma tion Processing from Université de Rennes I, France. Since 1983 is a full-time
professor at UNAM (Universidad Nacional Auténoma de México), Facultad de Ingenieria. He’s spent a sabbat-
ical year at IRISA, France, in 1990, a second sabbat ical in 1996 at the HITLab in Univer sity of Washington, USA,
and athird sabbatical in 2003 in the depart ment of Cyber netics in Reading Univer sity, UK. Hiscurrent interest
fields are: Digital filter design tools, Anal ysis and design of digital filters, Image and video c oding, Image anal
ysis, Theory and appli ca tions of error control coding, Joint source-channel coding, Turbo coding, Applications
of cryp tog raphy, Computer archi tec tures and Parallel processing.

Virginie F. Ruiz MIEEE, MIEE, received her BSc, MSc and PhD in signal processing from the Univer sity of Rouen,

210

France. She has the honour of being a recip ient of the French Foreign Office, Lavoisier programme. Her
research focuses on the theory and application of nonlinear filtering for esti mation, detec tion, predic tion,
analysis, recognition. Sheisconcerned with the devel op ment of funda mental prin ci plesoffinding new ways
of describing and processing signals to tackle the more general and chal lenging non-linear, non-Gaussian,
non-stationary prob lems. She has a long track record in the application of signal processing methods to
medical signaland image processing, bioen gineering, commu nications, syntheticaperture radar, and mobile
robotics. She has been with the Depart ment of Cyber netics at Univer sity of Reading since 1998. She is a senior
lecturer in signal processing and chair of the Instru men ta tion and Signal Processing research group. Deputy
Head of Cyber netics she is the Programme Director for several under grad uate programmes and is currently
involved ina number of inter na tional research projects and indus trial projects. She isa member of many tech-
nical programme commit tees for inter na tional confer ences and serves as reviewer for a number of Inter na
tionalJour nals.

Ingenieria Investigacion y Tecnologia, ISSN 2594-0732


http://dx.doi.org/10.22201/fi.25940732e.2007.08n3.016



