
Abstract

Operating system level virtualization is a technology that has recently emerged into the cloud services paradigm. It has the advantage
of providing better performance and scalability than para-virtualized or full virtualization hypervisors. This solution is getting accep-
tance into cloud infrastructures. Nowadays public cloud Infrastructure as a Service providers offer applications based in Docker
containers deployed on virtual machines. Only a few bring Infrastructure as a Service on a bare metal container infrastructure. In the
private cloud scenario, however, it hasn’t had a wide acceptance. Private cloud managers, like OpenStack, OpenNebula and Eu-
calyptus, don’t offer good support for it. OpenNebula is a flexible cloud manager, which has been gaining a lot of market over the last
years, so it seemed a good idea to strengthen the operating system virtualization support in this cloud manager. This will contribute
to achieve better interoperability, performance and scalability in OpenNebula clouds. Therefore, the objective of the present work
was to implement a driver to support Linux Containers for OpenNebula. The driver has several features such as: the ability to deploy
containers on File Systems, on Logical Volume Managers and on Ceph; it’s able to attach and detach network interface cards and
disks while the container is on; and it’s able to monitor and limit container’s resources usage.
Keywords: containers, LXC, OpenNebula, operating system virtualization.

Resumen

La virtualización de sistemas operativos es una tecnología emergente en el paradigma de la Computación en la Nube, presentando
mejores índices de desempeño y escalabilidad que los hipervisores soportados por la virtualización completa o por la para-virtuali-
zación. Actualmente abre paso en las infraestructuras de Nubes. Proveedores de Infraestructura como Servicio brindan servicios
basados en contenedores sobre máquinas virtuales, con soluciones como Docker. Pocos brindan Infraestructura como Servicio sobre
una plataforma de contenedores bare-metal. En las Nubes Privadas, sin embargo, los gestores de infraestructuras como OpenStack,
OpenNebula y Eucalyptus, le brindan muy poco soporte, o nulo, a esta tecnología. OpenNebula, gestor con aceptación en el mer-
cado, dada su flexibilidad, modularidad, interoperabilidad, usabilidad y ligereza, podría enriquecerse con la integración de una so-
lución de contenedores, lo que les añadiría a su infraestructura mayor eficiencia. Es por ello que el objetivo trazado en el presente
trabajo fue el desarrollo de un driver para OpenNebula, que le permitiese soportar LinuX Container, una de las principales soluciones
de virtualización de sistemas operativos actualmente. El driver obtenido soporta funcionalidades como el despliegue de contenedo-
res sobre Sistemas de Ficheros, Volúmenes Virtuales y Ceph, adicionar y eliminar interfaces de red, y discos a los contendores en
caliente.
Descriptores: OpenNebula, contenedores virtuales, LXC, virtualización de sistemas operativos.

IngenIería InvestIgacIón y tecnología

volumen XIX (número 1), enero-marzo 2018 63-76
ISSN 2594-0732 FI-UNAM artículo arbitrado
Información del artículo: recibido: 7 de octubre de 2016, reevaluado: 12 de marzo de 2017, aceptado: 3 de julio de 2017
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license
DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

Driver LXC development for OpenNebula
Desarrollo de un driver LXC para OpenNebula

García-Perellada Lilia Rosa
José Antonio Echeverría Higher Polytechnic Institute, La Habana, Cuba
Electrical Engineering Faculty
Telecommunication and Telematics Department
E-mail: lilianrosa@tele.cujae.edu.cu

Vega-Gutiérrez Sergio
José Antonio Echeverría Higher Polytechnic Institute, La Habana, Cuba
Electrical Engineering Faculty
Telecommunication and Telematics Department
E-mail: sergiojvg92@gmail.com

De la Fé-Herrero José Manuel
José Antonio Echeverría Higher Polytechnic Institute, La Habana, Cuba
Electrical Engineering Faculty
Telecommunication and Telematics Department
E-mail: mdelafe92@gmail.com

Rodríguez-De Armas Yalina
José Antonio Echeverría Higher Polytechnic Institute, La Habana, Cuba
Faculty of Electrical Engineering
Information and Communication Technologies Services Department
E-mail: yalina@electrica.cujae.edu.cu

Garófalo-Hernández Alain Abel
José Antonio Echeverría Higher Polytechnic Institute, La Habana, Cuba
Electrical Engineering Faculty
Telecommunication and Telematics Department
E-mail: aagarofal@gmail.com

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006
mailto:lilianrosa@tele.cujae.edu.cu
mailto:sergiojvg92@gmail.com
mailto:mdelafe92@gmail.com
mailto:yalina@electrica.cujae.edu.cu
mailto:aagarofal@gmail.com

Driver LXC development for OpenNebula

Ingeniería Investigación y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM64

Introduction

The majority of the widely deployed virtualization
platforms in data centers and cloud infrastructures are
based in full and para-virtualization technologies. Such
is the case of Xen, Kernel-based Virtual Machine (KVM),
VMware ESXi and Hyper-V hypervisors (Arceo et al.,
2015). On the other hand, the Operating System Level Vir-
tualization (OSLV) technology is getting acceptance into
cloud infrastructures with solutions like: Docker, LinuX
Container (LXC) and LXC’s new interface LXD (LXC/
LXD), which have their roots in the OSLV pioneer solu-
tion OpenVZ (Arceo et al., 2015; Agarwal, 2015; Wall-
ner, 2015; 2014).

OSLV can be considered as a lightweight alternative
to full and para-virtualization technologies. The main
difference is that OSLV eliminates the hypervisor layer,
redundant OS kernels, binaries and libraries needed to
run workloads in Virtual Machines (VMs). Hypervisors
abstract hardware, which results in overhead in terms
of virtualizing hardware and virtual device drivers. A
full OS is typically run on top of this virtualized hard-
ware in each VM instance. In contrast, containers im-
plement isolation of processes at the OS level, thus
avoiding such overhead. These containers run on top of
the same shared OS kernel of the underlying host ma-
chine, and one or more processes can be run within
each container. Due to the shared kernel, as well as the
OS libraries, container based solutions can achieve hig-
her density of virtualized instances with better perfor-
mance compared to hypervisor based solutions,
bringing thus better efficiency in a Data Center (DC) in-
frastructure (Arceo et al., 2015; Agarwal, 2015; Wallner,
2015; Morabito et al., 2015; Graber, 2015a; Petazzoni,
2015).

OSLV has been around for over 18 years, but its
adoption has been hindered in DC infrastructures be-
cause of the shared kernel approach and the mecha-
nisms to achieve the resource isolation, which can be an
issue for multitenant security. Nevertheless, nowadays,
OSLV supports a variety of technologies to mitigate
most security concerns, removing this drawback. The
main tools are: namespaces, specially user namespaces,
control groups (cgroup) and Linux Security Modules
(LSMs). Namespaces give the containers their own
view of the system, limiting what containers can see
and therefore use, while cgroup limits how much they
can use, achieving resource isolation. User namespaces
define by default unprivileged containers, which are
safe by design. The container uid 0 is mapped to an un-
privileged user outside of the container and only has
extra rights on resources that it owns itself. Thus LSMs

like SELinux, AppArmor and Seccomp are not neces-
sary, although solutions like LXC and LXC/LXD use
them to add an extra layer of security which may be
handy in the event of a kernel security issue. Cgroup,
restricts the use of physical resources like the Central
Processing Unit (CPU), the Random Access Memory
(RAM) and storage devices, through the establishment
of quotas and priorities to containers, avoiding poten-
tial Denial of Services (DoS) attacks. (Petazzoni, 2017;
Graver 2014a: 2016a). These alternatives are supported
by leading OSLV exponents today like LXC, LXC/LXD
and Docker. In addition, Cloud Service Providers (CSPs)
like Joyent, Kyup and ElasticHosts, are offering Infras-
tructure as a Service (IaaS) based on bare metal container
infrastructures (Graber, 2014b; 2017a, b, c; 2016b, c). So
it is time to exploits the advantages of the OSVL in DC
infrastructures, especially in Small and Medium-sized
Enterprises (SMEs).

Nowadays public cloud IaaS providers, like Ama-
zon (Graber, 2015b), offers applications based in Doc-
ker containers deployed on VM. Joyent, however,
brings IaaS on a bare metal containers infrastructure,
which completely enjoys the OS virtualization’s advan-
tages (Graber, 2015c). Joyent’s solution for deploying
containers is named Triton (Graber, 2015b; Cantrill,
2014). It is free and open source (Cantrill, 2014). In the
private cloud scenario, however, the OS virtualization
technology hasn’t a wide support. Private cloud mana-
gers, like OpenStack, OpenNebula and the Elastic Utili-
ty Computing Architecture for Linking your Programs
to Useful Systems (Eucalyptus), don’t offer good sup-
port for this technology, if they support it at all.

OpenStack stands out because it gives support to
LXC, Docker and LXD, but this support is on early stages
(Cantrill, 2017a, b, c). However, OpenStack is not the best
solution for all the entities. It is a complex Cloud Manage-
ment Platform (CMP) with a steep learning curve and
with high hardware requirements for its deployment
compared with others like OpenNebula (Chilipirea et al.,
2016a). OpenStack in a basic ready production deploy-
ment with high availability, suggests at least seven phy-
sical hosts for supporting its controller services, which
are recommended to not be virtualized (Cantril, 2017a;
Chilipirea et al., 2015). Hosts minimum features propo-
sed are 32GB of RAM, 2x Intel® Xeon® CPU E5-2620 0 @
2.00 GHz and two Network Interface Cards (NICs) at
10Gbps (Chilipirea et al., 2015a). On the other hand
OpenNebula requires only two VMs with 2GB of RAM,
two CPUs and two NICs for a production private cloud
(Chilipirea et al., 2016b). So, a lightweight, flexible, scala-
ble and easy to use CMP could be the efficient solution
for SMEs, especially for those with restricted budgets,

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

65

García-Perellada Lilia Rosa, Vega-Gutiérrez Sergio, De la Fé-Herrero José Manuel, Rodríguez-De Armas Yalina, Garófalo-Hernández Alain Abel

IngenIería InvestIgacIón y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM

that do not require high compute resources for suppor-
ting their Information Technology (IT) services, but do
need the benefits of the private cloud paradigm.

OpenNebula is an open-source solution, used in se-
veral types of environments. Leading organizations,
like National Aeronautics and Space Administration
(NASA) and the Tokyo Institute of Technology in Su-
percomputing field, use OpenNebula to build enterpri-
se private clouds, hosting, public cloud services, high
performance computing and science clouds. Some fea-
tures that makes OpenNebula a wise choice are: a power-
ful user security management, support of multi-tenancy
with group management, on-demand Provision of Vir-
tual Data Centers (VDCs), control and monitoring of vir-
tual and physical infrastructures, distributed resource
optimization, management of multi-tier applications,
standard cloud interfaces and simple provisioning por-
tal for cloud consumers; broad commodity and enterpri-
se platform support, such as a broad hypervisor and
storage technologies support; and easy extension and
integration, it is a modular and extensible architecture
able to fit into any existing DCs with customizable dri-
vers. It is a fully open-source technology available under
Apache License and new drivers can be easily written in
any language (Chilipirea et al., 2015b, c).

OpenNebula’s features directly contribute to achieve
the functional and nonfunctional requirements of a cloud
DC. However, its interoperability, adaptability, feasibility
and contribution to an efficient infrastructure with good
levels of performance and scalability, can be improved
with a reliable support of an OSLV solution. Two drivers
were developed for the supporting of OpenVZ and LXC,
one by China Mobile and the other by Valentin Bud res-
pectively. Both had deficient features and functionalities,
and poor support (Chilipirea et al., 2012; 2016c).

Therefore, the objective of the present work was to
implement a driver for supporting one of the main OS
virtualization solutions by OpenNebula. The driver de-
veloped was for LXC. It supports the following features:

• Deploy containers on File Systems (FS), Logical Volu-
me Manager (LVM) and Ceph.

• Stop, shutdown, reboot, suspend and resume con-
tainers.

• Live attach and detach NICs and disks.
• Monitor hosts and containers.

This paper treats the following topics: reasons for choo-
sing LXC to integrate to OpenNebula; OpenNebula’s
components and interfaces needed for the driver develop-
ment; the creation of the driver LXCoNe and; the proofs
of concept done to demonstrate its functionalities.

Why LXC?

LXC was selected by the authors of the present paper
for being integrated to OpenNebula because it’s a sta-
ble solution that supports the majority of the most im-
portant features of Linux containers; and because it has
a big community developing new functionalities that
improve its usability, security, performance and fault
tolerance isolations, which can be proved with LXD
(Chilipirea et al., 2015d; e; f; 2011; 2015g). LXC is a deri-
vation of OpenVZ, supported by Canonical Ltd., which
shares many of the same developers as OpenVZ (Wall-
ner, 2015). It is a collection of user-level tools that assists
in the creation, management and termination of contai-
ners, which is included in most Linux distributions. In
most cases installation is as simple as selecting it in the
package manager, removing one of the main OpenVZ
detractions (Aderholdt et al., 2014). LXC has other ad-
vantages like the supporting of:

• A liblxc library and Application Programming Interfa-
ces (APIs) for Ruby, Python 2 and 3, Haskell and Go.

• Different storage systems: Network Attach Storage
(NAS), Direct Attach Storage (DAS) (ext4 and B-tree
FS (btrfs)) and Storage Area Networks (SANs).

• Any disk format.
• Virtual SANs: Distributed Replicated Block Device

(DRBD) 9, Ceph and GlusterFS.

However, it doesn’t support some features like OpenVZ:
live migration and storage Quality of Service (QoS) (Chili-
pirea et al., 2015g). But LXC has LXD, a new project of
Canonical Ltd., aimed at revitalizing the use of LXC
(Scott, 2015a). It is intended (Aderholdt et al., 2014; Scott,
2015a, b; Banerjee, 2014; Ectors, 2014a, b; 2016; 2014):

• To make LXC-based containers easier to use through
the addition of a back-end daemon supporting a Re-
presentational State Transfer APIs (REST APIs) and a
straightforward Command Line Interface (CLI) client
that works with both the local daemon and remote
daemons via the REST API.

• To be image based. No more distribution templates,
only good, trusted images.

• To support live-migration and snapshotting.
• To support vSecure by default, with AppArmor,

user namespaces and Seccomp.

LXD isn’t a rewrite of LXC, in fact it’s building on top of
LXC to provide a new, better user experience. Under
the hood, LXD uses LXC through liblxc and its Go bin-
ding to create and manage the containers. It’s basically

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

Driver LXC development for OpenNebula

Ingeniería Investigación y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM66

an alternative to LXC’s tools and distribution template
system with the added features that come from being
controllable over the network (Scott, 2015b). So, why
not LXD? While LXC is stable, LXD is still undergoing
a rapid development. Some features haven’t been im-
plemented yet and the documentation is still a bit on
the light side (Aderholdt et al., 2014; Scott, 2015a, b).

Docker, although it is focused on being the univer-
sal container for applications (Ectors, 2014c), was not
selected because it is considered by the community and
by the authors of the present paper a solution suited for
providing Platform as a Service (PaaS) (Banerjee, 2014b),
not IaaS, for the main following reasons:

•	 It restricts the container to a single process only. The
default Docker base image OS template is not desig-
ned to support multiple applications, processes or
services like init, cron, syslog and Secure SHell (SSH).
This introduces a certain amount of complexity for
day to day usage scenarios, since current architectu-
res, applications and services are designed to operate
in normal multi process OS environments (Banerjee,
2014b, 2015a; Wallner, 2015).

•	 It separates container storage from the application,
which eliminates one of the biggest features of con-
tainers for end users, easy mobility of containers
across hosts (Banerjee, 2014b, 2015a; Wallner, 2015).

Besides, Docker was initially based on the LXC project,
although it has now developed its own implementation
libcontainer that uses kernel namespaces and cgroups di-
rectly (Ectors, 2014c). This makes Docker not a virtualiza-
tion solution, but one that automates the deployments of
applications inside containers, by providing an additio-
nal layer of abstraction and automation of the OSLV.

Components and APIs of OpenNebula Needed for
Integrating the LXC Driver

In order to achieve the goal of the present work, it was
necessary to identify what OpenNebula offers to cloud
integrators. The main strength is the modular and ex-
tensible architecture of OpenNebula, which has been
designed to be easily adapted to any infrastructure and
easily extended with new components (Banerjee,
2015b). Figure 1 shows the OpenNebula’s architecture
and the components and interfaces used for the driver
development. The Virtualization (VM driver) is in char-
ge of all the interaction with the hypervisors. This dri-
ver had to be created by the authors of the present
paper in order to manage LXC containers through
OpenNebula. The Monitoring (IM driver) makes it pos-

sible to acquire real time information of the host and
the VM deployed. This driver had to be created by the
authors of the present paper in order to monitor LXC
containers through OpenNebula. The VM-API and IM-
API were needed for the driver to interact with the rest
of the OpenNebula’s sections.

LXC Driver Requirements

LXC driver for OpenNebula should be able to perform
several actions, some of them mandatory and others
optional but desirable. The following actions must be
supported by the LXC driver:

•	 Deploy LXC containers.
•	 Limit container’s resources usage: disk quotas, In/

Out (I/O) rate limiting, RAM limits, CPU quotas and
network isolation.

•	 Reboot, reset and shutdown containers.
•	 Monitor hosts and containers.
•	 Create, delete and revert snapshots.
•	 Provide support for DAS FS such as ext4 and btrfs.
•	 Provide support for SAN networks implemented

with Ceph, Internet Small Computers System Interface
(iSCSI) or Fiber Channel (FC).

The following actions are considered by the authors of
this paper optional, but desirable:

•	 Provide support for NAS devices over the Network
File System (NFS) and ZFS. This could provide com-
patibility.

•	 Hot attach/detach NICs and disks. This could provi-
de elasticity, performance and usability.

Figure 1. Components used in the OpenNebula’s architecture
(Banerjee, 2015b)

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

67

García-Perellada Lilia Rosa, Vega-Gutiérrez Sergio, De la Fé-Herrero José Manuel, Rodríguez-De Armas Yalina, Garófalo-Hernández Alain Abel

IngenIería InvestIgacIón y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM

•	 Live snapshot. This could improve usability and
availability.

•	 Live migrate containers. Besides usability and avai-
lability, this action could also provide elasticity.

Integrating LXC in Data Centers and
Cloud Managers, Previous Work

Today’s free and open source cloud managers that have
worked in the support of LXC are OpenStack and
OpenNebula. Proxmox 4.x, a free and open source DC
manager for small enterprises, is supporting LXC too.
So, the drivers of these solutions were analyzed in or-
der to be aware of their advantages and drawbacks.

Two previous LXC drivers for OpenNebula were
found, one made by China Mobile and the other by Va-
lentin Bud:

•	 The driver from China Mobile is not accessible (Ba-
nerjee, 2014c). However, its developers showed the
bugs that had been found, such as the driver can’t
implement reboot, shutdown and restart opera-
tions, and explained that the reason behind them
could be the use of libvirt. This was useful, because
their experience gave reasons to use liblxc instead of
libvirt. Besides, their community announced that
the driver was only able to monitor hosts, deploy
and delete containers (Chilipirea, 2012).

•	 On the other hand, the driver from Valentin Bud
was implemented directly over LXC (Bud, 2015a). It
however only has support for LVM data stores and
with very limited features. Some of these features
does not work well, like container’s monitoring. It
has poor documentation and almost a year without
any support (Chilipirea, 2016c). However the work
from Valentin Bud gave an example about how to
write the driver and how to organize it. It also
showed how some features like monitoring and
support for LVM could be implemented.

OpenStack, a cloud manager with a great market share,
is actually developing its LXC driver. OpenStack allo-
cates its LXC driver inside “Group C”. Drivers inside
this group “have minimal testing and may or may not
work at any given time. Use them at your own risk”
(Bud, 2015b). For this reason and because this driver
was built over libvirt, it wasn’t used as a reference.

Proxmox 4.x supports LXC. It’s able to deploy, re-
boot, reset, shutdown and monitor containers. It can
use DAS, SAN and NAS storages. It has support to: live
snapshots, limit containers resources and live migra-
tion, although the latter is in the experimental phase

yet. It has limitations such as it: only supports rootfs
resizing through the Graphical User Interface (GUI) and
does not support hot disk attach/detach (Bud, 2015c; d;
e; 2016a) Proxmox 4.x was the reference for the authors
of the present paper, for the development of the CPU
limitations in the LXC driver for OpenNebula, and for
its Virtual Network Computing (VNC) implementation.

(Bud, 2016b) states that libvirt-lxc is not generally
recommended due to a lack of Apparmor protection for
containers. This recommendation, together with the
China Mobile experience, caused that the LXC driver
for OpenNebula had been developed with liblxc ins-
tead of libvirt.

LXC Driver Development for OpenNebula, LXCoNe

OpenNebula manages the hypervisor underneath by
running scripts on the host. Each operation that Open-
Nebula is able to perform over a hypervisor consists of
a specific script located at /var/lib/one/<driver-
name>/<script-name>. For example, the deploy action
is a script called deploy, and for hot-attach a NIC there
is a script called attach_nic. The name of the script is
always suggestive. The most important and difficult ac-
tion in this driver is to deploy a new container.

Figure 2 shows the script’s basic blocks. The first
step is to read all the information that will be used from
the containers template and store it in variables. Once
this is done, a folder that will contain all the necessary
files for the container is created with the right permis-
sions. This folder is created inside the folder configured
as the default container location in the lxc user tools, for
example /var/lib/lxc in Ubuntu. In this way the contai-
ners created by OpenNebula are shown at the output of
lxc-ls command, which is necessary for the driver to be
able to monitor containers. Then the configuration in-
formation for the NIC is extracted, arranged and prepa-
red inside a variable in a format that LXC’s configuration
file understands. This process is simple and is shown in
Figure 3. Now, the driver will proceed to configure the
root storage as explained in Figure 4.

Because this driver supports three different storage
types: FS, LVM and Ceph, it needs to find out which
type it is and act accordingly. In case it is FS and LVM,
the only thing that needs to be done is to indicate to
LXC a path to the image. It is important to remember
that OpenNebula uses images, either raw or qcaw, as
virtual disks. LXC supports regular FS and LVM, so
nothing else needs to be done, but in case the image is
stored as a block device in Ceph, this image will need to
be mapped in the host and provide LXC the route to
where it was mapped. The reason why LXC doesn’t

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

Driver LXC development for OpenNebula

Ingeniería Investigación y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM68

Figure 2. LXCoNe’s main work-flow diagram

Figure 3. NIC Configuration

Figure 4. Root storage set up process

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

69

García-Perellada Lilia Rosa, Vega-Gutiérrez Sergio, De la Fé-Herrero José Manuel, Rodríguez-De Armas Yalina, Garófalo-Hernández Alain Abel

IngenIería InvestIgacIón y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM

support Ceph’s block devices is mainly because it can’t
perform this mapping action by itself, so it needs to be
done by something else before the container starts. A
possible approach here could be to perform this opera-
tion from OpenNebula itself. This makes sense because
OpenNebula is already executing code, so the only
thing that needs to be done is to write a line that tells
the host to map the image. The problem with this ap-
proach is that, in case of an electrical failure or any
other issue that could cause the physical host to crash,
the containers that were running will not be able to
start automatically. An administrator will need to ma-
nually redeploy them from OpenNebula. One of the
goals wanted is precisely to avoid this, so another ap-
proach was used. The required instructions to map the
root image must be executed once the host’s OS initiali-
zes. Write it inside /etc/rc.local is a possibility. Also,
containers must be configured to start automatically
once the OS initializes.

The next step will be to generate LXC’s configura-
tion file. Inside this file will be located all the container’s
parameters, like NIC information, route to root storage,
and resources limit. At this point the container is ready
to start, but first must be checked if the user added
another disk(s) to the container. If this results to be the
case, the driver must be capable of attaching this disk(s)
to the container. LXC allows to mount locations inside
the container specified in the configuration file, but this
is only useful to mount images when the container is
going to be started, so hot-attach is not possible using
this approach. A method that allowed mounting ima-
ges inside the container while it was on needed to be
found. Once a solution was found, it was implemented

for the hot-attach disk action and also to add extra disks
defined by the user before starting the container. The
reason behind this was to have a single method to ad-
dress both situations. LXC allows managing devices in
running containers by using lxc-device. With this tool,
a block or loop device from the host can be added to a
running container, so it will be able to see it and mount
it. Now, it could be possible to instruct OpenNebula to
start the container and then use the previous defined
method to attach any extra disk specified by the user.
This solution will definitely work, but it has a major
drawback, containers will only be able to be started and
managed from OpenNebula. One of the goals wanted is
to be able to manage containers either from OpenNebu-
la, liblxc, a ssh session with the container or any other
way after they were created by OpenNebula. The solu-
tion found was to use LXC’s hooks. The instructions to
add the device to the container and then mount it are
not executed by OpenNebula, but written to the start
hook of LXC. The script that represents this start hook
is executed by LXC before it starts the container. These
last two steps are explained in Figure 5.

Extra disks attachment is not the only thing that is
configured in this hook at this point, neither the start
hook is the only one used. The VNC session is configu-
red in the start hook so it will be started with the contai-
ner, and then used by OpenNebula. LXC’s post-stop
hook is also used. It will run at the node’s namespace
after the container has been shut down. With the help
of this hook a cleanup process will occur. After a contai-
ner is shut down, files like LXC container’s configura-
tion and hooks are left behind. Even these files are small
they could cause problems once they accumulate after

Figure 5. Last steps before the container is ready

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

Driver LXC development for OpenNebula

Ingeniería Investigación y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM70

some time. This cleanup process is in charge of erasing
this files and any other remains of the container. Once
this two hooks are created, OpenNebula will instruct
LXC to start the container. After this, OpenNebula will
check the container’s status for a short while assuring it
was successfully started, and no error occurred. In case
of any error, OpenNebula will notice it, will change the
status to FAILURE and will log it.

Because every configuration in the node that LXC
might need to be able to successfully start the container
is set inside the hooks, and liblxc allows performing
operations such as shutdown, suspend, reboot and re-
sume over containers, they will be easy to implement
on OpenNebula. A simple command will usually be
enough. The only remaining operation is hot-attach/de-
tach NICs. Hot-attach can be accomplished easily by
creating a virtual Ethernet interface and moving it to
the container’s namespace. Hot-detach will be achieved
by deleting the interface.

This algorithm was implemented in bash at the first
place. It was deployed in the Private Cloud infrastruc-
ture of the José Antonio Echeverría Higher Polytechnic
Institute (CUJAE)’s DC, supporting the Information
and Communications Technology (ICT) of the universi-
ty. A stable release has been made public on github:
https://github.com/OpenNebula/addon-lxcone/, together
with the guidelines for supporting its deployment.

Proofs of concept

Different proofs of concept were done in the OpenNebu-
la Private Cloud of the CUJAE’s DC to check the effecti-
veness of LXCoNe. Figure 6 shows the logical design of
the CUJAE’s network, and Figure 7 shows the infra-
structure’s compute nodes. The Frontend was deployed
on an LXC container inside Node-0 using OpenNebula
4.14. The Frontend was able to manage containers inside
its own node, Node-0, and six other nodes. The first five

Figure 6. CUJAE data center’s logical design

Figure 7. Infrastructure’s compute nodes at ISPJAE/CUJAE’s data center

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006
https://github.com/OpenNebula/addon-lxcone/

71

García-Perellada Lilia Rosa, Vega-Gutiérrez Sergio, De la Fé-Herrero José Manuel, Rodríguez-De Armas Yalina, Garófalo-Hernández Alain Abel

IngenIería InvestIgacIón y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM

nodes were commodity hardware with identical charac-
teristics. The 6th. node was an Inspur professional server.
Two different storage systems were used at the same
time, Ceph and LVM. The tools used in the proofs of con-
cept were the OpenNebula cloud manager and its Suns-
tone administration interface.
The proofs of concept demonstrated the capacity of LX-
CoNe to:

•	 Deploy, shut down, suspend and reset of LXC con-
tainers. The container “r_nucleo1.cujae.edu.cu”
was configured in the TEMPLATE view and deplo-
yed in the VM view. Figure 8 shows that the contai-
ner was in the RUNNING state at the end of the test.

•	 Attach and detach disks and NICs. These procedu-
res were done at the Network/Storage tab in the VM
view. Figures 9 and 10 show the successful opera-
tions.

Figure 8. VM view. Container in RUNNING state

Figure 9. VM view. Extra HDD attached

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

Driver LXC development for OpenNebula

Ingeniería Investigación y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM72

•	 RAM limit per container. Figure 11 shows the Capa-
city tab inside the VM view, in which it can be seen
that the RAM provisioned to the container was 4GB.
Figure 12 shows that the Stress tool was configured
in the container to fill the RAM up to 5GB. That was
the only container running in the host. Figure 13
shows that the amount of RAM consumed didn’t
get over 4GB.

•	 Let OpenNebula monitors nodes and LXC contai-
ners. Figure 14 shows that the OpenNebula CLI was
used for checking the monitoring.

•	 Support LVM and Ceph. Figures 15 and 16 show
containers with different types of storage, LVM and
Ceph respectively. Figure 17 confirms that contai-
ners were in RUNNING state.

Figure 10. VM view. Extra NIC attached

Figure 11. VM view. 4 GB of RAM assigned to the container

Figure 13. Host’s maximum used RAM

Figure 12. Fill the container’s RAM. With stress tool

Figure 14. Host’s maximum used RAM

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

73

García-Perellada Lilia Rosa, Vega-Gutiérrez Sergio, De la Fé-Herrero José Manuel, Rodríguez-De Armas Yalina, Garófalo-Hernández Alain Abel

IngenIería InvestIgacIón y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM

This driver was tested on two flavors of Linux: Debian
8 (Jessie) and Ubuntu 14.04 (Trusty Tahr) (De la Fé,
2016).

Conclusions

The LXC integration in OpenNebula contributes to de-
velop more efficient solutions with high flexibility and
interoperability levels in Cloud infrastructures. It has
made possible an easier adaptation to the client econo-
mics restrictions, the human resources and the initial IT
technologies of the client. The present work has as a
main result, the development of a driver for OpenNe-
bula to allow the deployment and the monitoring of the
LXC virtualization platform. The driver has several ba-
sic features such as: to deploy, shutdown, suspend, re-
set LXC containers; to attach and detach disks and NICs
to LXC containers; to support LVM and different FS for

the storage; to limit RAM and CPU resources and to
monitor containers and hosts. The next steps will be ai-
med to integrate other features which guarantee securi-
ty, high availability and improvement of performance
and scalability in the infrastructure.

Acknowledgments

The authors wish to thank to the IT managers of the
CUJAE’s datacenter and network for all their support
and patience. This work was supported also by the Tele-
communication and Telematics Department, and by the
IT Services Department, both of the CUJAE University.

References

Aderholdt F., Caldwell B., Hicks S., Koch S., Naughton T., Pelfrey
D., Pogge J., Scott S.L., Shipman G., Sorrillo L. Review of

Figure 16. Image view. Ceph

Figure 15. Image view. LVM

Figure 17. Container’s state after the
deployment

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

Driver LXC development for OpenNebula

Ingeniería Investigación y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM74

enabling technologies to facilitate secure compute customiza-
tion, Oak Ridge, Tennessee, USA, OAK Ridge National Labo-
ratory, ORNL/TM-2015/210, 2014.

Agarwal K. A Study of Virtualization Overheads, (thesis master of
Science in Computer Science), United State of America, Stony
Brook University, 2015, pp. 55 [on line]. Available on: http://
animal .oscar .cs .stonybrook.edu/papers/f i les/Kavi-
taAgarwalMSThesisSubmission.pdf.

Arceo Feria A., Montejo-Ricardo G., García-Perellada L.R., Irigo-
yen-Saumel A., Garófalo- Hernández A.A. Propuesta de prue-
bas, parámetros y métricas para comparar plataformas de
virtualización, on: XVI Convención de Ingeniería Eléctrica
(CIE 2015) (16th., 2015, Santa Clara, Cuba). XVI Convención
de Ingeniería Eléctrica CIE 2015, Santa Clara, Cuba, Martha
Abreu University, 2015, pp. 605-612.

Banerjee T. LXC vs LXD vs Docker-Making sense of the rapidly
evolving container ecosystem. Flockport, 2014a [on line].
Available on: https://www.flockport.com/lxc-vs-lxd-vs-doc-
ker-making-sense-of-the-rapidly-evolving-container-ecosys-
tem/.

Banerjee T. Understanding the key differences between LXC and
Docker. Flockport, 2014b [on line]. Available on: https://
www.flockport.com/lxc-vs-docker/.

Banerjee T. China Mobile Releases OpenNebula-based Public
Cloud, OpenNebula | Blog”, OpenNebula Systems, 2014c [on
line]. Available on: http://opennebula.org/blog/?author=52.

Banerjee T. Dockerfile reference, Docker, 2015a [on line]. Available
on: https://docs.docker.com/reference/builder/.

Banerjee T. Scalable Architecture and APIs — OpenNebula 4.12.1
documentation, OpenNebula Systems 2015b [on line]. Availa-
ble on: http://docs.opennebula.org/4.12/integration/getting_
started/introapis.html.

Bud V. LXC Drivers for OpenNebula. GitHub, Inc., 2015a [on line].
Available on: https://github.com/OpenNebula/addon-lxc.

Bud V. HypervisorSupportMatrix-OpenStack. OpenStack Foun-
dation, 2015b [on line]. Available: https://wiki.openstack.org/
wiki/HypervisorSupportMatrix.

Bud V. How to add and/or resize a LXC disk. Proxmox Support
Forum, XenForo Ltd., 2015c [on line]. Available on: https://
forum.proxmox.com/threads/how-to-add-and-or-resize-a-
lxc-disk.23792/.

Bud V. Lxc - How to resize a linux container in proxmox-Stack
Overflow. Stack Overflow, Stack Exchange Inc., 2015d [on
line]. Available on: http://stackoverflow.com/ques-
tions/32370052/how-to-resize-a-linux-container-in-proxmox.

Bud V. Problem with LXC disk resize. Proxmox Support Forum,
XenForo Ltd., 2015e [on line]. Available on: https://forum.
proxmox.com/threads/problem-with-lxc-disk-resize.24658/.

Bud V. Doubts with LXC File system and LXC disk size. Proxmox
Support Forum, XenForo Ltd., 2015f [on line]. Available on:
https://forum.proxmox.com/threads/doubts-with-lxc-file-sys-
tem-and-lxc-disk-size.23124/.

Bud V. Roadmap-Proxmox VE. Proxmox VE, 2016a [on line]. Avai-
lable on: http://pve.proxmox.com/wiki/Roadmap.

Bud V. LXC. Ubuntu, 2016b [on line]. Available on: https://help.
ubuntu.com/lts/serverguide/lxc.html.

Cantrill B. Smar tData Center and Manta are now open source-
Blog-Joyent. Joyent, Inc., 2014 [on line]. Available on: https://
www.joyent.com/blog/sdc-and-manta-are-now-open-source.

Cantrill B. Operations Guide Release Version: 15.0.0. OpenStack,
2017a [on line]. Available on: https://docs.openstack.org/ops-
guide/.

Cantrill B. Linux Containers-LXD-Getting started-OpenStack. Ca-
nonical Ltd., 2017b [on line]. Available on: https://linuxcontai-
ners.org/lxd/getting-started-openstack/.

Cantrill B. Feature Support Matrix — nova 15.0.0.0rc2.dev705 docu-
mentation. OpenStack Foundation, 2017c [on line]. Available on:
https://docs.openstack.org/developer/nova/support-matrix.html.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. Paper-Linux-VServer. GNU Free Documentation
License 1.2, 2011 [on line]. Available on: http://linux-vserver.
org/Paper.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. OpenNebula LXC Driver Plugin (OneLXC)–
OpenNebula, OpenNebula Project, 2012 [on line]. Available
on: http://opennebula.org/opennebula-lxc-driver-plugin-one-
lxc/.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. OpenStack architecture design guide. OpenStack
Foundation, 2015a [on line]. Available on: http://docs.opens-
tack.org/arch-design/arch-design.pdf.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. An Overview of OpenNebula—OpenNebula
4.14.0 documentation, OpenNebula Systems, 2015b [on line].
Available on: http://docs.opennebula.org/4.14/design_and_
installation/building_your_cloud/intro.html.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. Features—OpenNebula 4.14.0 documentation,
OpenNebula Systems, 2015c [on line]. Available on: http://docs.
opennebula.org/4.14/release_notes/release_notes/features.
html#features.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. Linux Containers-LXC-News. Canonical Ltd.,
2015d [on line]. Available on: https://linuxcontainers.org/lxc/
news/.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. Linux Containers-LXD-News. Canonical Ltd.,
2015e [on line]. Available on: https://linuxcontainers.org/lxd/
news/.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. Roadmap, OpenVZ Virtuozzo Containers Wiki,
2015f [on line]. Available on: https://openvz.org/Roadmap.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. Comparison, OpenVZ Virtuozzo Containers

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006
http://animal.oscar.cs.stonybrook.edu/papers/files/Kavi-taAgarwalMSThesisSubmission.pdf
http://animal.oscar.cs.stonybrook.edu/papers/files/Kavi-taAgarwalMSThesisSubmission.pdf
http://animal.oscar.cs.stonybrook.edu/papers/files/Kavi-taAgarwalMSThesisSubmission.pdf
http://animal.oscar.cs.stonybrook.edu/papers/files/Kavi-taAgarwalMSThesisSubmission.pdf
https://www.flockport.com/lxc-vs-lxd-vs-doc-ker-making-sense-of-the-rapidly-evolving-container-ecosys-tem/.Banerjee
https://www.flockport.com/lxc-vs-lxd-vs-doc-ker-making-sense-of-the-rapidly-evolving-container-ecosys-tem/.Banerjee
https://www.flockport.com/lxc-vs-lxd-vs-doc-ker-making-sense-of-the-rapidly-evolving-container-ecosys-tem/.Banerjee
https://www.flockport.com/lxc-vs-lxd-vs-doc-ker-making-sense-of-the-rapidly-evolving-container-ecosys-tem/.Banerjee
https://www.flockport.com/lxc-vs-lxd-vs-doc-ker-making-sense-of-the-rapidly-evolving-container-ecosys-tem/.Banerjee
https://www.flockport.com/lxc-vs-docker/
https://www.flockport.com/lxc-vs-docker/
http://opennebula.org/blog/?author=52
https://docs.docker.com/reference/builder/
http://docs.opennebula.org/4.12/integration/getting_
https://github.com/OpenNebula/addon-lxc
https://wiki.openstack.org/
https://forum.proxmox.com/threads/how-to-add-and-or-resize-a-lxc-disk.23792/
https://forum.proxmox.com/threads/how-to-add-and-or-resize-a-lxc-disk.23792/
https://forum.proxmox.com/threads/how-to-add-and-or-resize-a-lxc-disk.23792/
https://forum.proxmox.com/threads/how-to-add-and-or-resize-a-lxc-disk.23792/
http://stackoverflow.com/ques-tions/32370052/how-to-resize-a-linux-container-in-proxmox
http://stackoverflow.com/ques-tions/32370052/how-to-resize-a-linux-container-in-proxmox
http://stackoverflow.com/ques-tions/32370052/how-to-resize-a-linux-container-in-proxmox
https://forum
https://forum.proxmox.com/threads/doubts-with-lxc-file-sys-tem-and-lxc-disk-size.23124/
https://forum.proxmox.com/threads/doubts-with-lxc-file-sys-tem-and-lxc-disk-size.23124/
https://forum.proxmox.com/threads/doubts-with-lxc-file-sys-tem-and-lxc-disk-size.23124/
http://pve.proxmox.com/wiki/Roadmap
https://help
https://www.joyent.com/blog/sdc-and-manta-are-now-open-source
https://www.joyent.com/blog/sdc-and-manta-are-now-open-source
https://docs.openstack.org/ops-guide/.Cantrill
https://docs.openstack.org/ops-guide/.Cantrill
https://docs.openstack.org/ops-guide/.Cantrill
https://linuxcontai-ners.org/lxd/getting-started-openstack/
https://linuxcontai-ners.org/lxd/getting-started-openstack/
https://linuxcontai-ners.org/lxd/getting-started-openstack/
https://docs.openstack.org/developer/nova/support-matrix.html
http://linux-vserver
http://opennebula.org/opennebula-lxc-driver-plugin-one-lxc/.Chilipirea
http://opennebula.org/opennebula-lxc-driver-plugin-one-lxc/.Chilipirea
http://opennebula.org/opennebula-lxc-driver-plugin-one-lxc/.Chilipirea
http://docs.opens-tack.org/arch-design/arch-design.pdf
http://docs.opens-tack.org/arch-design/arch-design.pdf
http://docs.opens-tack.org/arch-design/arch-design.pdf
http://docs.opennebula.org/4.14/design_and_
http://docs
https://linuxcontainers.org/lxc/
https://linuxcontainers.org/lxd/
https://openvz.org/Roadmap

75

García-Perellada Lilia Rosa, Vega-Gutiérrez Sergio, De la Fé-Herrero José Manuel, Rodríguez-De Armas Yalina, Garófalo-Hernández Alain Abel

IngenIería InvestIgacIón y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM

Wiki, 2015g [on line]. Available on: https://openvz.org/Com-
parison.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. A comparison of private cloud systems, 30th In-
ternational Conference on Advanced Information Networ-
king and Applications Workshops (WAINA), 2016a, pp.
139-143.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. OpenNebula 5.0 Deployment guide Release 5.0.2.
OpenNebula Systems, 2016b [on line]. Available on: http://
docs.opennebula.org/pdf/5.2/opennebula_5.2_deployment_
guide.pdf.

Chilipirea C., Laurentiu G., Popescu M., Radoveneanu S., Cernov
V., Dobre C. GitHub-OpenNebula/addon-lxc: Hypervisor
Drivers for LXC, GitHub, Inc., 2016c [on line]. Available on:
https://github.com/OpenNebula/addon-lxc.

De la Fé J.M., Vega S. LXCoNe, Installation & Configuration Gui-
de, OpenNebula/addon-lxcone, GitHub, Inc., 2016 [on line].
Available on: https://github.com/OpenNebula/addon-lxcone.

Ectors M. LXD and Docker, Telruptive. Telruptive 2014a [on line].
Available on: http://telruptive.com/2014/11/11/lxd-and-docker/.

Ectors M. LXD and Docker-DZone Cloud. DZone, 2014b [on line].
Available on: https://dzone.com/articles/lxd-and-docker.

Ectors M. LXD and Docker-DZone, 2014c [on line]. Available on:
https://dzone.com/articles/lxd-and-docker.

Ectors M. LXD: the next-generation container hypervisor for Li-
nux | Cloud | Ubuntu, Canonical Ltd, 2016 [on line]. Availa-
ble on: http://www.ubuntu.com/cloud/tools/lxd.

Graber S. LXC 1.0: Security features. Stéphane Graber’s website,
2014a [on line]. Available on: https://stgraber.org/2014/01/01/
lxc-1-0-security-features/

Graber S. Elastic Containers. ElasticHosts Blog, 2014b [on line].
Available on: https://www.elastichosts.com/blog/elastic-con-
tainers/.

Graber S. Large scale container management with LXD and
OpenStack. Presented at the LinuxCon + CloudOpen + Con-
tainerCon NA 2015, Sheraton Seattle, Seattle, WA, 2015a [on
line]. Available on: http://events.linuxfoundation.jp/sites/
events/files/slides/ContainerCon%202015-%20LXD%20
%26%20OpenStack.pdf

Graber S. AWS, Amazon EC2 Container Service, Detalles del pro-
duct. Amazon Web Services, Inc., 2015b [on line]. Available
on: //aws.amazon.com/es/ecs/details/.

Graber S. Joyent TritonTM Elastic Container Service-Public
Cloud-Joyent, Joyent, Inc., 2015c [on line]. Available on:
https://www.joyent.com/public-cloud.

Graber S. LXD 2.0: Resource control. Stéphane Graber’s website,
2016a [on line]. Available on: https://stgraber.org/2016/03/26/
lxd-2-0-resource-control-412/

Graber S. Scalable Cloud Hosting on Linux Containers. Kyup.,
2016b [on line]. Available on: https://kyup.com.

Graber S. Innovative Cloud Platform on Linux Container. Kyup.,
2016c [on line]. Available: https://kyup.com/linux-containers.

Graber S. Joyent Public Cloud Pricing. Joyent, Inc., 2017a [on line].
Available on: https://www.joyent.com/pricing/cloud/compute.

Graber S. Joyent Triton Compute. Joyent, Inc., 2017b [on line].
Available on: https://www.joyent.com/triton/compute.

Graber S. Pricing ElasticHosts Linux, Windows VPS Hosting.
Elastichosts, 2017c [on line]. Available on: https://www.elasti-
chosts.com/pricing/.

Morabito R., Kjällman.J., Komu M. Hypervisors vs. lightweight
virtualization: A performance comparison, on: 2015 IEEE In-
ternational Conference on Cloud Engineering, 2015, pp. 386-
393.

Petazzoni J. Anatomy of a container: namespaces, cgroups, and
some filesystem magic. Presented at the LinuxCon + CloudO-
pen + ContainerCon NA 2015, Sheraton Seattle, Seattle, WA,
2015 [on line]. Available on: http://events.linuxfoundation.
jp/sites/events/files/slides/Anatomy%20of%20a%20contai-
ner.pdf

__. Linux Containers-LXC-Security. Canonical Ltd., 2017 [on line].
Available on: https://linuxcontainers.org/lxc/security/.

Scott. A quick introduction to LXD, Scott’s Weblog, 2015a [on
line]. Available on: http://blog.scottlowe.org/2015/05/06/
quick-intro-lxd/.

__. Linux Containers-LXD-Introduction, Canonical Ltd, 2015b [on
line]. Available on: https://linuxcontainers.org/lxd/introduc-
tion/.

Steven J. Vaughan-Nichols. Ubuntu LXD: Not a Docker replace-
ment, a Docker enhancement. ZDNet, 2014 [on line]. Available
on: http://www.zdnet.com/article/ubuntu-lxd-not-a-docker-re-
placement-a-docker-enhancement/.

Wallner R. Linux Containers: Parallels, LXC, OpenVZ, Docker
and More. Au Courant Ttechnology [on line], 2015. Available
on: http://aucouranton.com/2014/06/13/linux-containers-pa-
rallels-lxc-openvz-docker-and-more/.

Wallner R. LXC, 2014 [on line]. Available on: https://help.ubuntu.
com/lts/serverguide/lxc.html.

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

https://www.joyent.com/public-cloud
https://stgraber.org/2016/03/26/
https://kyup.com/linux-containers
https://www.joyent.com/pricing/cloud/compute
https://www.elasti-chosts.Morabito
https://www.elasti-chosts.Morabito
https://www.elasti-chosts.Morabito
http://events.linuxfoundation
http://blog.scottlowe.org/2015/05/06/
https://linuxcontainers.org/lxd/introduc-tion/.Steven
https://linuxcontainers.org/lxd/introduc-tion/.Steven
https://linuxcontainers.org/lxd/introduc-tion/.Steven
http://www.zdnet.com/article/ubuntu-lxd-not-a-docker-re-placement-Wallner
http://www.zdnet.com/article/ubuntu-lxd-not-a-docker-re-placement-Wallner
http://www.zdnet.com/article/ubuntu-lxd-not-a-docker-re-placement-Wallner
http://aucouranton.com/2014/06/13/linux-containers-pa-rallels-Wallner
http://aucouranton.com/2014/06/13/linux-containers-pa-rallels-Wallner
http://aucouranton.com/2014/06/13/linux-containers-pa-rallels-Wallner
https://help.ubuntu
http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006
https://openvz.org/Com-parison.Chilipirea
https://openvz.org/Com-parison.Chilipirea
https://openvz.org/Com-parison.Chilipirea
http://docs.opennebula.org/pdf/5.2/opennebula_5.2_deployment_
http://docs.opennebula.org/pdf/5.2/opennebula_5.2_deployment_
https://github.com/OpenNebula/addon-lxc
https://github.com/OpenNebula/addon-lxcone
http://telruptive.com/2014/11/11/lxd-and-docker/
https://dzone.com/articles/lxd-and-docker
https://dzone.com/articles/lxd-and-docker
http://www.ubuntu.com/cloud/tools/lxd
https://stgraber.org/2014/01/01/
https://www.elastichosts.com/blog/elastic-con-tainers/.Graber
https://www.elastichosts.com/blog/elastic-con-tainers/.Graber
https://www.elastichosts.com/blog/elastic-con-tainers/.Graber
http://events.linuxfoundation.jp/sites/
https://kyup.com
https://www.joyent.com/triton/compute
https://linuxcontainers.org/lxc/security/

Driver LXC development for OpenNebula

Ingeniería Investigación y tecnología, volumen XIX (número 1), enero-marzo 2018: 63-76 ISSN 2594-0732 FI-UNAM76

About the authors

Lilia Rosa García-Perellada. Engineer in Telecommunications and Electronics from the
José Antonio Echeverría Higher Polytechnic Institute (CUJAE), La Habana, Cuba.
She holds a M.S. from the CUJAE University too. She is an assistant professor in
the Telecommunication and Telematics Department of the CUJAE University.

Sergio Vega-Gutiérrez. Engineer in Telecommunications and Electronics from the José
Antonio. Echeverría Higher Polytechnic Institute (CUJAE), La Habana, Cuba. He
is currently working in Telecommunication and Telematics Department of the
CUJAE University.

José Manuel de la Fé-Herrero. Engineer in Telecommunications and Electronics from the
José Antonio Echeverría Higher Polytechnic Institute (CUJAE), La Habana, Cuba.
He is currently working in Telecommunication and Telematics Department of the
CUJAE University.

Yalina Rodríguez-De Armas. Engineer in Telecommunications and Electronics from the
José Antonio Echeverría Higher Polytechnic Institute (CUJAE), La Habana, Cuba.
She is an instructor adjunct professor in the Telecommunication and Telematics
Department of the CUJAE University, and works in the IT Services Department of
the CUJAE University.

Alain Abel Garófalo-Hernández. Engineer in Telecommunications and Electronics from
the José Antonio Echeverría Higher Polytechnic Institute (CUJAE), La Habana,
Cuba. He holds a M.S. and a Ph.D. from the CUJAE University too. He is an assis-
tant adjunct professor in the Telecommunication and Telematics Department of
the same university.

Suggested citation:

Chicago style citation

García-Perellada, Lilia Rosa, Sergio Vega-Gutiérrez, José Manuel De
la Fé-Herrero, Yalina Rodríguez-De Armas, Alain Abel Garófalo-Her-
nández. Driver LXC development for OpenNebula. Ingeniería Investi-
gación y Tecnología, XIX, 01 (2018): 63-76.

ISO 690 citation style

García-Perellada L.R., Vega-Gutiérrez S., De la Fé-Herrero J.M., Ro-
dríguez-De Armas Y., Garófalo-Hernández A.A. Driver LXC develop-
ment for OpenNebula. Ingeniería Investigación y Tecnología, volume
XIX (issue 1), January-March 2018: 63-76.

DOI: http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

http://dx.doi.org/10.22201/fi.25940732e.2018.19n1.006

