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Abstract
The search for alternatives to curb climate change and its devastating consequences for today’s society, leads to research environmen-
tally friendly climate systems. To optimize or control them, artificial neural networks (ANN) is considered an effective option. Adiaba-
tic absorption is based on separate design for heat and mass transfer process in order to reduce the size of equipment. This study deals 
with the application of ANN on the experimental results of a single effect water-lithium bromide adiabatic absorption facility and its 
optimization using an inverse ANN. Transient and steady state data were used to obtain three empirical models. The models develo-
ped correspond to the coefficient of performance (COP), cooling power and generation power of the facility. Steady state statistics 
consists of 219 experimental points obtained at different operating conditions. These data were used to train and test the steady 
state and transient ANN models. For transient statistics, 1445 values were considered for a period. In the validation data set, the re-
sults showed that simulations and the experimental data were in good agreement with an R > 0.98 for both steady state and transient 
models. A model for COP, based on the principle of accessibility of data, was developed including temperatures for the external fluid 
circuits with good results. The inverse neural model applied to transient data demonstrated satisfactory results as well, making possi-
ble the optimization of the facility. These results illustrate the adequacy in using an ANN with transient data in absorption systems, 
making it especially attractive for solar cooling applications.
Keywords: Adiabatic absorption, water-lithium bromide, absorption systems, artificial neural network, performance estimation, op-
timization.

Resumen
La búsqueda de alternativas para frenar el cambio climático y sus consecuencias devastadoras para la sociedad actual, conduce a la 
investigación de sistemas climáticos respetuosos con el medio ambiente. Para optimizarlos o controlarlos, las redes neuronales artifi-
ciales (ANN) se consideran una opción efectiva. La absorción adiabática se basa en un diseño separado para el proceso de transfe-
rencia de calor y masa con el fin de reducir el tamaño del equipo. Este estudio trata la aplicación de redes neuronales artificiales 
(RNA) sobre los resultados experimentales de un sistema de absorción simple efecto agua- LiBr y su optimización utilizando una red 
neuronal inversa. Se usaron datos tanto en estado transitorio como estacionario para obtener tres modelos empíricos. Los modelos 
desarrollados corresponden al coeficiente de rendimiento (COP en inglés), potencia de refrigeración y de generación de la instala-
ción. Las estadísticas de estado estable consisten en 219 puntos experimentales obtenidos en diferentes condiciones de operación. 
Estos datos se utilizaron para entrenar y probar los modelos de estado estacionario y transitorios de ANN. Para las estadísticas transi-
torias, se consideraron 1445 valores para un período. En el conjunto de datos de validación, los resultados mostraron que las simu-
laciones y datos experimentales se ajustan con un R> 0.98 para ambos modelos, transitorio y estable. Se obtuvo un modelo para el 
COP, con base en la accesibilidad de los datos, incluyendo temperaturas de los circuitos de fluido externos con buenos resultados. El 
modelo de red neuronal inversa aplicado a los datos transitorios demostró resultados satisfactorios, haciendo posible la optimización 
de la instalación. Estos resultados ilustran la idoneidad del uso de una RNA con datos transitorios en sistemas de absorción, lo que es 
especialmente atractivo para aplicaciones de refrigeración solar.
Descriptores: Absorción adiabática, agua-Bromuro de litio, sistemas de absorción, redes neuronales artificiales, estimación de des-
empeño, optimización.
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Introduction

The use of absorption systems represents an option for 
the substitution of organic refrigerants with natural 
substances and a reduction in electricity consumption. 
This fact, as well as the possibility of using solar energy 
as the input power, has led to an increased interest in 
the introduction of absorption systems in air conditio-
ning and refrigeration applications. 

The improvement of heat and mass transfer proces-
ses is a key factor in the reduction of the exchange area 
and size of the absorber that in turn, allows for the re-
duction of weight, volume and cost of the absorption 
equipment. The basis for the development of adiabatic 
absorption runs along the same line: if the concentrated 
solution is sub-cooled, i.e. its temperature is reduced 
below the equilibrium temperature at the current con-
centration, and then distributed on the refrigerant va-
pour into an adiabatic chamber, the refrigerant vapour 
is then absorbed by the solution. Once the absorption 
process begins, the solution is diluted and its tempera-
ture increased because of the transformation of vapour 
into liquid. The processes of heat and mass transfer are 
then separated into two different pieces of equipment. 
The process of cooling the solution is moved out of the 
absorber into small dimension heat exchangers thus re-
ducing the heat transfer area. When this absorption 
method is used, part of the solution that leaves the ab-
sorber has to be sub-cooled and re-circulated to the ab-
sorber, with the purpose of reaching the final 
concentration required for the diluted solution. The 
other part is then pumped to the generator to be con-
centrated again.

In general, a separate design of sub-cooler and ab-
sorber allows for a better optimization of each compo-
nent, helping to improve the overall efficiency. This is 
why adiabatic absorption is being researched as one 
method for improving absorption processes by separa-
ting and individually optimizing absorption and heat 
rejection and is also the base for the development of the 
equipment here presented.

One field of interest in absorption systems is the 
prediction and control of their performance. This is 
done through the development of models or calculation 
methods that analyze the performance of an absorption 
cycle (Hellmann et al., 1998; Joudi and Lafta, 2001; Flo-
rides et al., 2003). In this sense, artificial neural networks 
(ANN) are a very attractive application due to increa-
sing interest in their use in load forecasting, refrigera-
tion, and modeling of heat pump systems (Arcaklioglu, 
2004; Mohanraj et al., 2009; Hosoz and Ertunc, 2006; Lai-
di and Hanin, 2013). State of the art studies, both theo-

retical and experimental concerning the use of ANN 
were well resumed by Mohanraj et al. (2012). It is parti-
cularly interesting if applied to absorption cycles, given 
the fact that performance parameters are affected by a 
number of variables, like temperatures and flow rates, 
varying simultaneously during the operation. 

For the particular case of absorption system mode-
lling using ANN, some works can be summarized: va-
rious papers have been devoted to the modelling of the 
thermodynamic properties of the most commonly used 
fluids in absorption systems (Sözen et al., 2004b; Şencan, 
2007; Şencan et al., 2006; Şencan and Kalogirou, 2005; 
Sözen and Akçayol, 2004a; Sözen et al., 2003). They also 
show results regarding the system performance using 
the ANN results. The modelling of a steam fired double 
effect absorption chiller in a cooling process, used in the 
pharmaceutical industry, is presented by Manohar et al. 
(2006). This study also uses an ANN based on external 
cooling and chilled water temperatures, with good pre-
dicting results. Chow et al. (2002) combine a neural net-
work and genetic algorithms for the controlled 
optimization of a direct-fired absorption system. The 
system-based controlled approach optimizes the use of 
fuel and electricity for the economical operation of a 
commercial absorption unit, concluding that considera-
ble savings can be achieved. Yung (2007) reported the 
optimal chiller sequencing in a semiconductor industry 
by applying ANN to the power consumption data. The 
results showed that the electricity consumption could 
be reduced varying the chillers start-up sequencing. 
More recent papers include: the work performed by 
Rosiek and Batlles (2010) on the use of ANN to model a 
solar-assisted air-conditioning system. This system is 
based on a commercial single-effect LiBr-H2O absorp-
tion chiller fed by water coming from solar collectors. 
Using real data, they obtained a model to predict the 
efficiency of both chiller and the global system, giving a 
list of key variables. Labus et al. (2010) compared diffe-
rent methods for modeling the performance of a small 
capacity absorption chiller, concluding that an ANN 
was slightly better than other models analyzed. Her-
nández et al. (2012) used an inverse ANN in order to 
estimate the performance of a solar intermittent refrige-
ration system for ice production under different experi-
mental conditions, showing optimization in perfor- 
mance and a sensitivity analysis. Labus et al. (2012) pro-
posed a controlled strategy for a commercial absorp-
tion cooling system by taking the temperature and flow 
rates of external circuits. They used an inverse ANN in 
order to achieve the desired controlled strategy with 
good results. Hernández (2009a) developed a estima-
tion for predicting operating conditions of variables, 
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depending on a desired response variable based on a 
neural network inverse. The mathematical develop-
ment describes the use of Nelder-Mead-Simplex 
method to solve the formulation and obtain the opti-
mum operating conditions on heat and mass transfer 
during foodstuffs drying. Álvarez et al. (2016) develo-
ped an ANN for the modelling of the performance of a 
horizontal falling film absorber with aqueous (lithium, 
potassium, sodium) nitrate solution. The authors repor-
ted that the ANN model was an effective tool for pre-
dicting the efficiency parameters of the absorber. 
Kumar et al. (2016) reported the use of ANN integrated 
with genetic algorithm to predict the performance of 
direct expansion solar assisted heat pump. The results 
showed that the use of ANN integrated with GA gives 
better optimized values compared to the value obtai-
ned from ANN. Afram et al. (2017) carried out a com-
prehensive review of the ANN based model predictive 
control for systems design. Tugcu and Arslan (2017) 
developed a model to optimize an absorption refrigera-
tion system using NH3–H2O driven with geothermal 
energy. The optimum designs were determined using 
the obtained weights and biases of the best ANN topo-
logy, yielding a coefficient of performance and exergy 
efficiency of 0.57 and 0.62, respectively.

The use of inverse ANN has been successfully 
applied to predict the optimal operation conditions for 
a single-stage heat transformer (Colorado et al., 2011), 
the optimum coefficient of performance of a heat trans-

former (Morales et al., 2015) and polygeneration sys-
tems (Hernández et al., 2013) among others.

From the above summary, it can be concluded that 
the application of inverse ANN on an adiabatic absorp-
tion system under transient conditions, using original 
experimental data, has not yet been explored. The tran-
sient model focuses on the importance of accounting 
for the time-varying operation conditions. This study 
presents the prediction of the performance variables of 
a particular test facility, based on the concept of adiaba-
tic absorption and its optimization using an inverse 
ANN. The experimental data available was used to 
create a model with predicting purposes. Three ANN 
models for the prediction of evaporator and generator 
powers, as well as COP were developed, all with good 
accuracy and short computation time.

Development

System description

Figure 1 shows a diagram of the single effect absorption 
test equipment. It consists of four loops: the hot loop, 
the solution loop, the cold loop, and the chilled water 
loop. Main components include: two evaporators, ab-
sorber, generator, condenser, sub-cooler and solution 
heat exchanger. The last four components are plate heat 
exchangers while the evaporators are fan-coiled tubes 
and the absorber is an adiabatic chamber. A computeri-

Figure 1. Flow diagram of the test facility
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zed data acquisition system is used to register the mea-
sured data.

Aqueous LiBr solution inside the absorption cham-
ber flows into two separate streams: a strong solution 
(solution poor in water or concentrated solution) co-
ming from the generator, and a re-circulated solution. 
The strong solution is separated from the water vapor, 
which goes to the condenser, and directed to the absor-
ber. A re-circulated solution is extracted from the 
bottom of the absorption chamber and pumped into the 
sub-cooler, where most of the absorption heat is rejec-
ted and then the sub-cooled solution is returned to the 
absorber. Two fan coils receive the external fluid circu-
lating through each evaporator. The objective of pla-
cing two evaporators is to have a larger heat exchange 
area available and to guarantee the symmetry in the 
supply of vapor to the absorption vessel. Distribution 
problems in the refrigerant flow were detected; which 
will be discussed in following sections. 

The experimental setup configuration and the experi-
mental uncertainty analysis were described in detail in 
other publications (Gutiérrez et al., 2006; Gutiérrez et al., 
2011). Figure 2 illustrates the experimental test facility.

Experimental test run

The data acquisition system is composed of two data-
loggers, manufactured by Yokogawa, with 50 input ports 
available altogether, and a 24 V power supply. The oil 
flowmeter and the pressure transducers use the power 
supply to output an electric current of 4 to 20 mA. The 
input ports were read in intervals of 0.5 seconds.

The experimental procedure consists of periods of 
start-up, normal operation, and shut down of the ma-
chine. Start-up begins with the heating of the thermal 
oil from ambient temperature to the temperature set 
point tset while the oil is pumped to the generator. The 
solution pump is switched on and the weak solution 
flow rate    weak  to the generator is fixed at the desired 
value changing the frequency of the pump and adjus-
ting the valves. The re-circulated solution flow rate       
    r  varies according to the aperture of the valves and 
the driving frequency of the pump engine. Cooling 
tower flows are also switched on at this moment. Table 
1 shows the operating ranges of the controlled parame-
ters and of the variables considered in the study.

Figure 3 indicates the time period until stability is 
achieved (time elapsed until equilibrium). Some varia-
bles are plotted against time in order to show their evo-
lution during a typical experiment. These variables are: 
inlet oil temperature, Toil,l (tset), outlet solution tempera-
ture at generator, TG,o, outlet chilled water temperatures 

at evaporators 1 and 2, Tchw1,o and  Tchw2,o, mass flow rates 
and salt concentration of weak and strong solutions  
    weak ,     strong , Xweak and Xstrong. The fluids in the machine 
are initially at ambient temperature. The start up of the 
machine is represented by an increasing tendency of 
the variables, until the set value of generation tempera-
ture (in red, Toil,I) is reached. Then, indicated with a cir-
cle, the stability is reached.  

The stability of the working conditions is assured by 
selecting, from registered data, a period of time (20 min 
at least) in which temperatures, pressure and both     weak 
and       strong show a constant behaviour. With these ranges 
for reference, the stability of the remaining variables is 
checked. 

After this procedure, the recorded data correspon-
ding to all sensors connected to the data loggers is ave-
raged. Table 2 presents sensors used in the experimental 
test facility.

Experimental uncertainty analysis

A calibration process was carried out for all instru-
ments described in Figure 1. Using the calibration 
functions for every sensor, systematic errors were redu-
ced as much as possible. The remaining random uncer-
tainty U for an experimental result R, which is a function 

m

m

m m

m
m

Figure 2. Images of the absorption test facility
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of n independent parameters xi, is estimated, according 
to the Gauss algorithm, as:

		                               (1)

The uncertainty of instruments is given in Table 2. 

Relevant parameters

The performance parameters corresponding to each 
one of the operating conditions are obtained according 
the procedure explained in the previous section.

2

1 2, ( ,... )
i

n
i x i n

i

fU u R f x x x
x=

 ∂
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∂ 
∑

Table 1. Operating ranges of input variables

Parameter Working Range

Inlet oil temperature (tset) 78.8 – 99 �C

Weak solution mass flow rate (   weak) 169.6-363.5 kg/h

Recirculated solution mass flow rate (   r) 261.8-1051.3 kg/h

Cooling water temperature, condenser 18.9-30.8 �C

Cooling water temperature, subcooler 18.5-30.1 �C

Chilled water temperature, evaporator 1 6.5-19.1 �C

Chilled water temperature, evaporator 2 9.7-19.8 �C

Refrigerant outlet temperature, condenser 17-28 �C

Refrigerant inlet temperature, evaporator 1 18.3-23.6 �C

Refrigerant inlet temperature, evaporator 2 15.4-21.3 �C

Refrigerant outlet pressure, condenser 2.8-5.9 kPa

Low pressure 0.7-1.9 kPa

m

m

Table 2. Sensors used in the experimental test facility

Instrument Quantity Range Uncertainty

Thermocouple 30 5 - 110 °C ±(0.2°C - 0.6°C)

Solution flow and 
density meter 2 150-400 kg/h ± 0.5%

Oil flowmeter 1 1000-3600 l/h ± 3.1%

Cooling water flowmeters 2 1200-1500 kg/h ± 1.1%

Recirculated 
solution flowmeters 1 200-1000 kg/h ± 1.3%

Fan coil flowmeters 2 400-600 kg/h ± 0.7%

Pressure sensors 4 7-130 mbar ±(1.8 - 3)%

Figure 3. Temperatures, concentration and flow rates vs. time 
during an experiment



Performance estimation and optimization of an adiabatic H2O-Libr absorption system using artificial neural networks

Ingeniería Investigación y Tecnología, volumen XX (número 1), enero-marzo 2019: 1-13 ISSN 2594-0732 FI-UNAM6

http://dx.doi.org/10.22201/fi.25940732e.2019.20n1.007

From measured values of inlet (i) and outlet (o) 
water temperatures t of both evaporators, cooling 
power is obtained from Eq. (2):

                                                          (2)

The heating power supplied to the generator was calcu-
lated as:

                                                             (3)

C corresponds specific heat capacity of a liquid and m  
is the mass flow rate. The subscript “chw” corresponds 
to chilled water.

The experimental COP was calculated as the quo-
tient of (2) and (3).

							     
    (4)

In this work, the selection of variables involved in the 
obtaining of an ANN model is based on the proved de-
pendency of the facility performance with external 
water circuit temperatures and the “overflow” of refri-
gerant in the evaporators (Gutiérrez et al., 2012). The 
overflow depends on the internal fluid temperatures of 
the liquid refrigerant at the condenser exit and the eva-
porators entries Tl,C, Tl,E1, Tl,E2, as well as the low pressu-
re  Plow and condenser exit pressure PC,o. Therefore, the 
input layer consists of 8 temperatures: The external 
fluid circuit temperatures in the generator, sub-cooler, 
condenser, and evaporators TG,set, Tcw,c, Tchw,E1, Tchw,E2, res-
pectively, and the above mentioned Tl,C, Tl,E1, Tl,E2. In 
addition, 2 mass flow rates, corresponding to weak and 
re-circulated solutions,    weak and,     r which are contro-
lled variables. Finally, Plow and PC,o are also included. In 
sum 12 input operation variables will be considered in 
the artificial neural model. 

Another model was developed based on the princi-
ple of the accessibility of data in practical applications, 
with the intention that such model could be used as a 
black box. The variables selected for this scenario are 
the mean value of external fluid circuit temperatures: 
TG,set, Tcw,C, Tchw,E1, Tchw,E2. Time is also included in this stu-
dy in order to compare the simulated and experimental 
data in a transient experiment.

The output layer contains only one of the three va-
riables: the generation power (  G), the cooling power 
(   E), or the COP.

Artificial neural networks model

Neurons are grouped into distinct layers (input, hidden 
and output layer) as well as interconnected according 
to a given architecture. The network function is deter-
mined largely by the connections between neurons. 
Normally, each connection between two neurons has a 
weight and bias coefficients attached to it. The standard 
network structure for an approximation function is the 
multiple-layer feed forward which has one or more 
hidden layers of sigmoid neurons followed by an out-
put layer of linear neurons.

The linear output layer lets the network produce va-
lues outside the –1 to +1 range. The linear output layer 
function is used for forecasting the performance of the 
adiabatic absorption cycle (Hernandez et al. 2009b). 

Learning algorithm

The learning algorithm is defined as a procedure that 
involves adjusting of the weights and biases, by mini-
mizing an error function (usually a quadratic one) bet-
ween the network output, for a given set of inputs, and 
the correct target. If smooth non-linearity is applied, 
the gradient of the error function can be computed by 
the classical back-propagation procedure (Natrick et al., 
1998). In this work, the Levenberg-Marquardt algo-
rithm optimization procedure –in the Matlab Neural 
Network Toolbox was used. This algorithm is an ap-
proximation of Newton’s method which was designed 
to approach second order training speed without ha-
ving to compute the Hessian matrix (Martin et al., 1994). 
The root mean square error (RMSE) is calculated with 
the theoretical values and network predictions.

Database preparation

Steady states and transitory data were considered for 
the absorption system modelling by means of artificial 
neural networks. In order to characterize the system, 
219 experimental points were obtained at different ope-
rating conditions (Table 1). These data was used to train 
and test the steady state and transient ANN models. 
For transient data base 1445 values were considered for 
a period of time.

In order to test the robustness and then the predic-
tion ability of the models, the experimental database 
was split into the learning and testing database. Both 
transient and steady state experimental database were 
split into learning (80% of the data) and testing (20% of 
the data) with the objective of obtaining the best corre-
lation between output target and output simulation 

, ,( )E chw w chw i chw oQ m C t t= ⋅ ⋅ - 

, ,( )G oil oil oil i oil oQ m C t t= ⋅ ⋅ - 

E

G

Q
COP

Q
=




m

Q
Q
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and a good representation of the operating performan-
ce. With the learning database the optimal weights and 
biases are obtained and with the testing database the 
model is validated (Rumelhart et al., 1986). The model 
adequacy is obtained after testing the increment of neu-
rons in the hidden layer. In this model, we avoided 
over-fitting by considering the comparison between the 
root mean square error (RMSE) obtained for both the 
learning database and the testing database (Hernández 
et al., 2009b). 

The input layer consists of variables that the opera-
tor can control and/or that influence the equipment per-
formance. In response to this, variables selected 
correspond to those listed in section 4. Input and out-
put parameters were normalized for calculation from 0 
to 1 (Khataee and Mirzajani, 2010).

Inverse artificial neural network

According to Hernández (2009); Labus et al. (2012); 
Hernández et al. (2012); Laidi and Hanin, (2013); Her-
nández (2013); Morales et al. (2015); the artificial neural 
network can be inverted to calculated a desired input 
parameter. In order to apply this inverse artificial neu-
ral network (ANNi), first it is necessary to have the 
ANN model. In this case, the multi-layer feed-forward 
(MLFF) is applied. If the hyperbolic tangent sigmoid 
transfer function is used in the hidden layer and the li-
near function is considered in the output layer then the 
output layer is:

	

(5)

Where:

In(k) = the inputs parameters
Wi 	 = the weight between input and hidden layer 
Wo 	 = the weight between hidden and output layer 
b1 	 = the bias in the hidden layer and 
b2 	 = the bias in the output 
S 	 = the neurons number in the hidden layer 
k 	 = the parameters number in the input layer

Consequently, if the Equation 5 has more of one neuron 
in the hidden layer (S>1), then the inverse artificial neu-
ral network can be as following (Hernández, 2009a) 
equation 6.

Where In(x) is the input parameter value to be calcula-
ted. Consequently, the Equation (6) can be solved using 
a method of optimization to obtain the desired input 
parameter. In this case, the Nelder-Mead simplex algo-
rithm was applied. 

In the case that the Equation 5 had only one neuron 
in the hidden layer then it can have an analytical solu-
tion (Hernández, 2009b). 

Results and discussion

In this work, three neural network models were obtai-
ned from different configuration applied. First, steady 
state database was worked to obtain         and        pre-
diction. The architecture of a neuronal network model 
is the following: 12 input neurons with 2 neurons in the 
hidden layer (involving 29 coefficients: 26 weight and 3 
biases). This structure was found to be efficient in pre-
dicting      . The same operation variables in the input 
layer were used to predict        . For this model, 3 neu-
rons in the hidden layer were found to be satisfactory. 
The neural network model developed (Figure 4) invol-
ved three and two neurons to determine         and        , 
respectively, for a steady state condition. 

The input layers for these neural network models are 
also illustrated in this Figure 4. Table 3 shows the main 
characteristics of how neural network models work.

The comparison of experimental          and         against 
simulated results using ANN models, for steady state 
data are illustrated in Figures 6a and 6b. Satisfactory 
results (R > 0.98) were obtained in both cases. Experi-
mental and simulated data of          values were compa-
red through a linear regression model in Figure 6a
(             =  a + b               ; n = 219; R = 0.9867; confidence
level >99%) (Bevington and Robinson, 2003; Verma, 
2005). The intercept a  (-0.0331 < a < 0.0443) includes 
zero, and the slope b (0.9646 < b < 1.0223) includes 1. For 
the case of,     results are illustrated in Figure 5  
(          = a + b            ; n = 219; R= 0.9879). The intercept a 
(-0.0229 < a < 0.1881) includes zero, and the slope b 
(0.9553 < b < 1.0098) includes 1. Both models indicate 
statistically significant correlation between the experi-
mental and simulated heat flux values without any bias 
(Verma, 2005). Consequently, neural network was vali-
dated with the actual steady state database. The propo-
sed artificial neural network matches very well the 
whole database, thus simplifying the energy analysis.

Regarding the results for transient data, the archi-
tecture of neural networks keeps the same input layer 
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in this work using 12 operation variables. Experimental 
and simulated data of COP values were compared 
through a linear regression model in Figure 6. Again, 
satisfactory results were obtained with R > 0.98 (COP = 
a + bCOPexp; n = 1562; R = 0.9911, confidence level > 99 %) 
(Bevington and Robinson, 2003; Verma, 2005).

The intercept a(-0.0011 < a < 0.0057) includes zero, 
and the slope b (0.9837 < b < 1.0010) includes 1. Conse-
quently, the statistical significant correlation between 
experimental and simulated values at transient condi-
tions was found. 

Figure 5. Experimental and simulated values of evaporator power       Eand generator power        using steady state database, a) results 
for      , b) eesults for

EQ GQ

EQ
GQ

Figure 4. Input and output variables used for the 
neural network computational model

Table 3. Artificial neural networks models development in this work

φ N° of neurons in the 
input layer

N° neurons in the 
hidden layer

Output
 layer R Intercept Slope

Model 1 
(steady state) 12 3 QE 0.9867 0.0056 0.9934

Model 2 
(steady state) 12 2 QG 0.9879 0.0826 0.9826

Model 3 (dynamic 
state) 12 12 QE 0.9648 0.0738 0.9470

Model 4 (dynamic 
state) 12 16 QG 0.9790 0.1659 0.9653

a)				                                                b)
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The results corresponding to the additional model 
developed for transient data, which includes only the 
temperatures of external fluid circuits, are depicted in 
Figure 7a. In order to predict the coefficient performan-
ce 32 neurons in a hidden layer were necessary. The hy-
perbolic tangent sigmoid transfer function (tan sig) and 
a linear function were used to obtain the resulting mo-
del. The variation of COP with time corresponds to the 
behavior of experimental data shown in Figure 3, due 
to the on-off control. Figure 7b shows the relative error 
obtained, which is less than 10% for most data. These 
are satisfactory results and demonstrate that the ANN 
approach is appropriate for the performance prediction 
of absorption systems using available data. Other objec-
tives such as absorption machine control as well as op-
timization can also be met. 

Even though the dynamic behavior of a thermal de-
vice is complicated, the results obtained using an ANN 
analysis in a transient model were good. This tool 
allows us to determine a real-time coefficient of perfor-

mance in order to make the necessary adjustments to 
optimize the operation of an absorption facility. 

Optimum operating conditions using  
inverse neural network

According to the artificial neural network section pre-
sented in this work, it is possible to propose an online 
estimation strategy of the COP. The following steps were 
developed: First, it is possible to predict the coefficient of 
performance considering only external variables in the 
system. The temperatures at generator, condenser and 
temperatures corresponding to evaporator 1 and 2 were 
selected in this section. Second, training and validation 
of ANN model to predict the COP in transient state. The 
training procedure was carried out following the steps 
enlisted previously in the artificial neural network sec-
tion. The ANN trained had 32 neurons in the hidden la-
yer and Tcw,C, Tcw,S, TE1, TE2,   and time as the neurons in the 
input layer to predict COP. 

Figure 6. Experimental and simulated values corresponding to 
coefficient of performance using the dynamic database

Figure 7a. Experimental and simulated 
values of coefficient of performance COP 
vs. time using transient database  
Figure 7b. Relative error between 
simulated and experimental values of 
COP vs. time using transient database

a)				              b)
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Experimental and simulated data of COP values 
were compared through a linear regression model in 
Figure 8 as: OP = 0.0169 + 0.9427COPexp, R = 0.9696 and 
n = 385. Therefore, the capacity of such model to predict 
the COP in transient state has been verified. 

Finally, the artificial neural network inverse as opti-
mization strategy. In addition to this, a strategy for op-
timizing the COP for the system has been developed. 
The selected strategy is the inverse neural network. 
With the aim of developing the artificial neural network 
to the experimental facility presented in this work, a 
test is carried out.

The direct neural network model is used to estimate 
the COP, based on the following operating conditions: 
TC = 21.93 °C, TS = 21.34 °C, TE1 = 15.77 °C, TE2 = 16.18 °C. 
The generator temperature is estimated as a function of 
time according to the following relationship:

TG = 0.00747t + 85                                                                                    (7)

Equation (7) is used to reproduce the generator tempe-
rature TG versus time (t), keeping fixed operating condi-

tions. Figure 9 shows the COP against time as the result 
of simulation of the direct neural network.

The inverse neural network is developed based on 
the following expression (Hernández, 2009b):

(8)

Where s is the number of hidden neurons and yi estima-
ted as:

yj = -2(Wi(j,2) Tcw,C + Wi(j,3) Tcw,s + Wi(j,4) TE1+ Wi(j,5) TE2+Wi(j,6)   
T1,C + Wi(j,7) TE1 + Wi(j,8) T1,E2 + Wi(j,9)     weak + Wi(j,10)     r+
Wi(j,11) Plow + Wi(j,12) PC,o + b1(j,1))			   (9)

Weights and bias are obtained from direct neural net-
work model.

It is possible to obtain the time when the system rea-
ches the experimental point COP=0.3115. The numeri-
cal result obtained is t=503.8750 using the inverse neural 
network inverse methodology. The relative absolute 
percentage error calculated is 0.775% compared to time 
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Figure 8. Transcendent experimental 
data to train and validate the direct ANN 
model

Figure 9. Coefficients of performance against time simulated 
with the direct ANN
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experimentally determined. The error is calculated as 
follows:

                                                                                                                        (10)

The computation time to solve the inverse neural net-
work was 4.04 s.

However, the process could be reaching to a new 
stable state, or at least that indicates the simulation. In 
order to estimate the optimum COP, the inverse neural 
network strategy was applied for a second time. Assu-
ming an optimal COP = 0.3485 (see Figure 8), keeping 
the operating conditions described above, the time in 
which the system reaches the optimum value is calcula-
ted. The calculated time with the artificial neural net-
work is t = 476.5s. The percentage error calculated was 
3.59% compared to the time estimated using the direct 
neural network.

Conclusions

The application of artificial neural networks for mode-
ling the performance of a particular adiabatic absorp-
tion facility has been developed in this work. 
Experimental results are included in steady and tran-
sient operations. Three models were obtained corres-
ponding to cooling and generation capacities and 
coefficient of performance of the experimental system. 
These models were trained and validated with both 
steady and transient state experimental database. With 
the purpose of using a black-box model, an additional 
model was obtained using external circuit temperatu-
res, with satisfactory results when compared in a tran-
sient experiment. Results demonstrated a good 
agreement between experimental and simulated values 
for all cases. The models obtained could be used to pre-
dict cycle performance or on-line estimation. Optimiza-
tion of COP was carried out using an inverse neural 
network with satisfactory results. This method, applied 
to transient data, demonstrate to be a useful tool for 
control purposes. 
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