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Abstract
One of the factors that affects the quality of medical images is noise in the acquisition process. Rician noise, for example, is present 
in MRI images and causes errors in measurements and interpretations of visual information. The objective of this work is to obtain 
high indexes of structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) through digital filtering of RICIAN noise. In the de-
sign, clusters of low coefficients are used to eliminate information redundancies, the probability density function (fdp) of the RICIAN 
noise to estimate signal levels and minimization by conjugate gradient to achieve a greater approximation to the real signal. The 
model is applied by filtering longitudinal sequences of MRI studies at T2 acquisition time affected with RICIAN noise in a controlled 
manner. Different models of noise filtering were implemented and tested on the same test sequence. The proposed method achieves 
an iterative approach to the real image. As a result, the SSIM and PSNR parameters improve in a magnitude of 0.02 and 0.3dB over 
the estimate with Gaussian fdp. The System has as limiting the effectiveness of the estimation for high signal levels due to the increa-
se of the standard deviation in the fdp of the RICIAN noise in the aforementioned levels, however it manages to surpass the perfor-
mance of current models within the state of the art. The proposed model has the novelty of linking the grouping of coefficients and 
the estimation by means of the fdp of the RICIAN noise. The system helps to avoid errors in measurements and interpretations of data 
affected by RICIAN noise, in particular in MRI studies. It is concluded that the fpd of RICIAN noise behaves like a good estimator in 
a digital filtering model with grouping of coefficients. Despite having better performance for medium and low signal levels, the pro-
posed system manages to overcome the results obtained by other filtering models described within the state of the art. 
Keywords: Filtering, Rician noise, sparse representation, clustering, probability.

Resumen
Uno de los factores que afecta la calidad de las imágenes médicas es el ruido en el proceso de adquisición. El ruido Rician, por 
ejemplo, está presente en las imágenes de MRI y provoca errores en mediciones e interpretaciones de la información visual. El pre-
sente trabajo tiene como objetivo obtener elevados índices de similitud estructural (SSIM) y relación pico de señal sobre ruido (PSNR) 
mediante filtrado digital del ruido RICIAN. En el diseño se utilizan agrupamientos de coeficientes escasos para eliminar redundancias 
de información, la función de densidad de probabilidad (fdp) del ruido RICIAN para estimar niveles de señal y minimización median-
te gradient conjugado para lograr mayor aproximación a la señal real. El modelo se aplica filtrando secuencias longitudinales de es-
tudios MRI en tiempo de adquisición T2 afectadas con ruido RICIAN en forma controlada. Se implementaron diferentes modelos de 
filtrado de ruido y se probaron sobre la misma secuencia de prueba. El método propuesto logra una aproximación iterativa a la 
imagen real. Como resultado, los parámetros SSIM y PSNR mejoran en una magnitud de 0.02 y 0.3dB sobre la estimación con fdp 
gausiana. El Sistema tiene como limitante la efectividad de la estimación para altos niveles de señal debido al aumento de la desvia-
ción típica en la fdp del ruido RICIAN en los niveles mencionados, sin embargo, logra superar el desempeño de modelos actuales 
dentro del estado del arte. El modelo que se propone tiene la novedad de vincular el agrupamiento de coeficientes y la estimación 
mediante la fdp del ruido RICIAN. El sistema contribuye a evitar errores en mediciones e interpretaciones de datos afectados por 
ruido RICIAN, en particular, en estudios de MRI. Se concluye que la fdp del ruido RICIAN se comporta como un buen estimador en 
un modelo de filtrado digital con agrupación de coeficientes. A pesar de tener mejor desempeño para niveles medios y bajos de 
señal, el sistema propuesto logra superar los resultados obtenidos por otros modelos de filtrado descritos dentro del estado del arte.
Descriptores: Filtrado, ruido Rician, representación escasa, agrupamiento, probabilidad.
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IntroductIon

In Magnetic Resonance Imaging (MRI), the denoising 
process is an important step because it impacts the 
diagnostic accuracy. In many cases the signal-to-noise-
ratio (SNR) of the acquired images must be improved. 
This is carried out by using denoising methods and by 
preserving most of the image features. In MRI, the ima-
ges are contaminated with Rician noise with a Probabi-
lity Density Function (PDF) that depends on the level of 
the original signal. The problem of noise filtering in 
MRI has been addressed in different works (Pizurica, 
2003; Casaca, 2010; Pu, 2016; Weaver, 1991). In the sig-
nal processing literature, several popular denoising al-
gorithms are based on thresholds for coefficients of 
some transformation (Sendur, 2002). These approaches 
attempt to preserve significant features of the image 
while removing most of the noise.

If the wavelet transform is applied on the MR mag-
nitude data directly, both the wavelet and the scaling 
noisy coefficients are biased estimates of the noise-free 
coefficients. In Nowak (1999), it was suggested that the 
application of the wavelet transform on the squared 
MR magnitude image data (which is non-central chi-
square distributed) would result in wavelet coefficients 
being no longer biased estimates of their noise-free 
counterparts. Although the bias still remains in the sca-
ling coefficients, in many models it is not signal-depen-
dent and the noise can, therefore, be easily removed 
(Pizurica, 2003; Nowak, 1999). Similarly, denoising 
methods based on anisotropic diffusion have been pro-
posed (Perona and Malik, 1990; Samsonov, 2004) The 
difficulty with wavelet or anisotropic diffusion algo-
rithms is the risk of over-smoothing the details, particu-
larly in low SNR images (Tisdall, 2005).

Also other strategies have been proposed. In He 
(2009), the estimation of the noise-free coefficients of 
the MR’s magnitude was carried out in a non-local 
mode using a log-likelihood function. The images are 
modeled as random fields where pixels with similar 
neighborhoods come from the same distribution. In, Si-
jbers (1998) the authors showed that the Maximum-
Likelihood (ML) estimation, which is known to yield 
optimal results asymptotically, enhances the conventio-
nal estimation methods. The proposed method is un-
biased for high signal-to-noise ratios (SNRs) and yields 
physical relevant results for low SNRs.

The concepts of non-local means and dictionary re-
construction have been used in Nair (2014); Aarya 
(2013); Elad (2006). In Nair (2014), a Non-Local Means 
Maximum Likelihood (NLMML) estimation method 
was used to estimate the noise-free coefficients from the 

MR’s magnitude images by focusing on preserving ed-
ges and tissue boundaries. The method is an improvisa-
tion over non-local means maximum likelihood 
approach for Rician noise reduction in MR images. In 
Aarya (2013), an adaptive filter for Rician noise based 
on the probability distribution function of the noise and 
the SNR information of the image was proposed. The 
filter uses the local statistics of the neighborhood within 
a mask to perform denoising. Thus, the filter adapts ac-
cording to the local SNR of the neighborhood. In Elad 
(2006), two training options are considered: using the 
corrupted image itself, or using a high-quality image 
database. The K Singular Values Decomposition 
(KSVD) was used to design an adaptive dictionary trai-
ned for natural real images, as well as on patches of the 
noisy image were also used.

Our method combines two important features, the 
Non-Local Maximum Likelihood (NLML) estimation 
and denoising via sparse and redundant representation 
in an unique process.

The KSVD method is introduced to construct an 
adaptive dictionary on the noisy image. The patches are 
grouped using the K-means algorithm and the Princi-
pal Components Analysis (PCA) to associate the cha-
racteristics (Annexed A). Afterward, the Rician dis- 
tribution guides each group by using local statistics to 
perform the denoising process in a Maximum A Poste-
riory (MAP) formulation. As a restriction over the space 
of search we estimate the noise coefficients over a resi-
dual image resulting from the noise image and an ini-
tial filtered image.

The problem of recovering a high-quality image 
from one or several degraded (e.g, noisy, blurred, and/
or down-sampled) versions can be generally formula-
ted by:

y = Hx +n                           (1)

Where:
y = available distorted image
H  = degradation matrix
x  = original image vector and
n  = noise vector

H can be the identity matrix, a blurring operator or a 
blurring and down-sampling operator.  The studies 
have been conducted to restore x from y, (Yang, 2010; 
Sendur, 2002). For an effective approach, the appropria-
te prior knowledge of the natural images must used 
(Rudin, 1992), similarly to the Tikhonov (1963) and To-
tal Variation (TV) regularization methods (Rudin, 
1992). However, these methods tend to over-smooth the 
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restored images due to the rigid rules of a piecewise 
function. An alternative is the use of sparsity-based re-
gularization (Sendur, 2002).  The model assumes that a 
signal  x ∈ RN can be represented as x ≈ a,  where  
 ∈ RN×M(N < M) is an over-complete dictionary and 
most entries of the coding vector α are zero or close to 
zero. The l1-norm based sparse coding problem is gene-
rally formulated in the following Lagrangian form:

                                                                                      (2)

where the constant l denotes the regularization para-
meter. With an appropriate selection of λ, we can ob-
tain a good approximation error and an appropriate 
sparsity of α. In the scenario of Image Restoration (IR), 
what we observed is the degraded image signal y. To 
recover x, first y is sparsely coded with respect to  for 
solving the minimization

                                                                                      (3)

Therefore, y is reconstructed b ŷ = ϕαy. The local sparsi-
ty constraint ‖α‖1 in Eq. 3 may not lead to an accurate 
image reconstruction because image sparse coding 
coefficients α are not randomly distributed. It is due to 
the internal correlations or redundancies in natural 
images, (Casaca, 2010; Pu, 2014). In Pu (2014), a group 
sparse coding scheme to code similar patches simulta-
neously was proposed achieving impressive denoising 
results. The KSVD method reported in Aharon (2006) 
bring better results than the cosine transform (DCT) in 
the dictionary construction.

In our work, the Probability Density Function (PDF) 
of the observed image is linked with an initial noise es-
timation. The coefficients of the residual noise decom-
position are used as a linker between the noisy and the 
reconstructed image. These two aspects are strong con-
siderations to adapt the denoising method to the Rician 
taking advantage of an initial estimation, the proces-
sing of the residual noise in the domain of the sparse 
representation and the MAP formulation.

In this paper, the Rician noise distribution is analy-
zed. The noise reduction is based on the estimation of 
coefficients of the unknown real values of the signal. 
For fast processing and accuracy, the process is ca-
rried out with a sparse representation of the image. 
Similar patches of the image are grouped in clusters 
and treated independently. The main contribution of 
this work are:

• A new Rician denoising procedure in a K-SVD spar-
se representation domain using statistical relations.

• A direct prediction of the sparse coefficients of the 
signal after an iterative process with initial non-lo-
cal estimation of the noise using residuals coeffi-
cients.

• A representation of the signal with clustering and 
dictionary reconstruction in the Rician denoise pro-
cedure.

The paper is organized as follows: Describes the pat-
ches decomposition of the signal and the sparse repre-
sentation; exposes the treatment of the noise in the 
sparse representation and the PDF model of the noisy 
image; explains the proposed denoising method; dis-
cusses the results; and draws the conclusions.

SparSe repreSentatIon and rIcIan model

In the proposed model, the input image y is first filtered 
by using a low pass filter with output yf. Then, the resi-
dual image, considering the initial noise approxima-
tion, is obtained by yr = y - yf. The  patch  at  location i  is  
extracted  from an  image  of  the  form xi = Rix.  The Ri     
matrix extracts the patch xi of dimension                 . Given 
a dictionary   RN×M (N< M). Each patch can be spar-
sely represented as xi =  ϕi αx,i by solving an l1 minimi-
zation problem αxi = argmin (‖xi - αi‖ + λ‖αi‖1), the 
image x can be represented by the set of sparse codes 
αx,i  with overlapped patches. A redundant patch-based 
representation of x is obtained by αxi as an over-deter-
mined system (Elad, 2006). The Eq. 4 yields an overall 
image reconstructed by averaging each patch.

                                                                                    (4)                                                                                                           

noISe In the SparSe repreSentatIon domaIn

The clean and the noisy image can be decomposed as a 
dictionary and the coefficients as the procedure develo-
ped in (Aharon, 2006). In a real situation, only the 
coefficients of the residual and noisy image can be 
acquired. The coefficients of the residual image exhibit 
similar characteristics to the Rician distribution. We pro-
pose a Gaussian filter with variance σ

2 to obtain the re-
sidual image yr. The dictionaries are learned from the 
example image patches by using the KSVD (Aharon, 
2006). However, it has been shown that sparse coding 
with an over-complete dictionary is unstable (Elad, 
2009). Especially, in the scenario of image restoration. A 
solution to this is to select k clusters with similar pat-
ches and then learn a KSVD sub-dictionary for each 
one. The similar patches are grouped in consecutive 

2

2 1
arg min( )x x

a
a φa l a= - +

2

2 1
arg min( )y xy H

a
a φa l a= - +

n n×

ai

2

2

( ) ( )1

1 1 ,
N T N T

x i i i i i x ix R R Rφa φa
-

= =≈ = ∑ ∑

mailto:http://dx.doi.org/10.22201/fi.25940732e.2019.20n1.011%0D?subject=


A new method for riciAn noise rejection in spArse representAtion

IngenIería InvestIgacIón y tecnología, volumen XX (número 1), enero-marzo 2019: 1-10 ISSN 2594-0732 FI-UNAM4

http://dx.doi.org/10.22201/fi.25940732e.2019.20n1.011

rows of clusters in the matrix Pk. This is carried out on 
the noisy image, the filtered and the residual images.

In the next step, a b factor in the sparse plane is esti-
mated from the residual image decomposition and then 
subtracted from the coefficients of the noisy image de-
composition.

αy - b ≈    αx                                                    (5)

The residual image yr is characterized by the previous 
knowledge of the Rician distribution. With a good esti-
mation of β in yr, the term       ≈ αx can be used instead of  αx 
in the Lagrangian model of reconstruction. Then, the 
coefficients of the clean image can be more approxima-
ted by using a minimization of Eq.  2, wherein a negati-
ve gradient method is proposed.

rIcIan noISe dIStrIbutIon

If the real and imaginary parts of a signal are corrupted 
with zero-mean, equal variance and uncorrelated Gaus-
sian noise, the envelope of the magnitude signal will 
follow a Rician distribution. This kind of noise is appa-
rent in many practical situations.  The signal magnitude   
M is expressed as: 

                                                      (6)

where A is the clean signal level, n1 and n2 are uncorre-
lated Gaussian noise variables with zero mean and 
equal variance.  The PDF of such image is a Rician dis-
tribution is expressed as:

                                                                              (7)      

with I0 the 0th -order modied Bessel function of the first 
kind and u the Heaviside step function. The moments 
of the distribution are difficult to calculate, the even-
order (non-central) moments are simple polynomials 
(e.g. second-order moment). The signal with Rician noi-
se is modeled with a probability density function (PDF) 
that changes the aperture with respect to the real level 
of signal A.

propoSed method

The connection between the MAP estimator and sparse 
representation was established in (Sendur, 2002).  In 
our model, the term θ = αy - β is defined. Using Eq. 5, 
for a given β, the MAP estimation of  θαy ≈ αx can be 
formulated as:

 (8)

arg max(log (P θ|αy))) = arg max (log (αy|θ)) + log(P(θ)))   (9)

According to Eq. 3 and knowing that 
P(ax , b|ay)P(ay) = P(ay| ax ,b )P(ax ,b), 
considering that for little values of 
β, P(ax , b) = P(ay) and P(ax , b| ay) = P (ay| axb) then the 
prior knowledge with a Gaussian distribution can be mo-
deled as P (θ|ay).

P(ax , b| ay) = P(ay |ax , b) =                          (10)

The likelihood term is characterized by the Gaussian 
distribution, θ  and β are assumed to be independent.  
In the prior probability P(θ|ay), θ reflects the variation 
of αy from the estimation of  b. If we take β as a good 
estimation, then θy = ax + b are basically the coefficients 
αy of the noisy image. Thus, we can assume that θ  fo-
llows an independently and identically distributed 
(i.i.d). process, and the joint prior distribution of the 
image to be the Rician noise P(θ). The estimated image    
can be modeled using Eq.  7 for small values of b.

The MAP approximation considers the coefficients 
of the unknown clean image x in Eq. 10 and the Rician 
distribution considers ay for modeling the observed 
image using the approximation of Eq. 5. Therefore, the 
proposed MAP formulation is:

                    (11)

The approximation to the MAP model of Eq. 10 is a 
classical Gaussian function. Then, we can use Eqs. 7 
and 8 to approximate to P (ay|ax, b) in the kind of Rician 
noise and the corrupted image can be modeled as:

                                                         (12)
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If the predicted values of b are considered independent 
of y, the term P(ax, b) can be approximated using Eq. 5 
in a discrete form as equation 13.

Where are the coefficients of the noisy image y, 
and   b the estimate of the noise. Then, a good estima-
tion of ayi and bi, can be computed as the weighted 
average of the sparse codes associated with the non-
local similar patches (including patch i) to patch. For 
each patch xi, we calculate a set of similar patches, 
denoted by Ωi. Then, Eq. 12 is applied for each clus-
ter Ωi. The problem is how to obtain a well approxi-
mation  bi,j  at position j of the group i. Applying 
logarithms to the MAP formulation in the correspon-
ding localization at the cluster Ωi, a good estimation 
of β maximizes the probability in the function 8 res-
pect to αx, a discrete formulation of the approxima-
tion using the Eq. 9 and 5 is eq. 14.             

determInatIon of   b

The parameter bi is determined on each cluster of ayr, b 
can be computed from the sparse codes of the residual 
output split in patches, the Eq. 14 is used to estimate ax. 
The term r denotes the sparse codes related to the esti-
mation of b as:

jayr = jay - G (jay)  (15)

Where G(.) is a low pass filter operator and r is the spar-
se representation of  yr, r  is characterized by the Rician 
distribution , then yr = jr.

                                                                                                                      (16)

where wik is a weight. Similar to the non-local means 
approach, we set the weights to be inversely proportio-
nal to the distance between the coefficients ri of the patch 
yri  and the coefficients ri,k of the patches yri,k in the kth 

cluster of patches.

                                                                                                     (17)

                   and                        are the estimates of the pat-
ches ri and ri ,k , h is a predetermined scalar and W is the 
normalization factor. With the non-local redundancies 
of natural images, we are able to achieve a good esti-
mation of the unknown sparse vectors xi with a good 
estimate of b, in the model of Eq. 14.

Stop crIterIon

The image estimation process is repeated until an ap-
proximation to the solution with error ξ is reached. The 
estimate of Eq. 14 is minimized with respect to b. In this 
case, we propose a numerical solution as the negative 
gradient. The negative differential of Eq. 14 is 

-Dax = 
                         x    x

Then a minimum differential is found numerically by 
using the conjugated gradient (Eq. 18).       

(19)
                                                                                                     
l is the number of iterations l = 1.ite. When l = 1, b  is 
calculated using the residual yr and a new assignation 
is made. The estimated image is assigned:              .

the algorIthm

1. Apply a filtering procedure to the noisy image y to 
obtain yr using  yr = y-G(y).

2. Provide a patch representation of the image using 
the extraction matrix R in the form of yi = Riy and 
setting k groups using KMEANS and PCA classifi-
cation.
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3. Apply the KSVD algorithm and build the dictionary 
representation corresponding to yr, y  and obtain  ayr 
and ay in the sense yr = φαyr and y = φαy for each 
patch of y.

4. Calculate ωi,k using Eq. 17 and obtain an initial esti-
mation of β using Eq. 16.

5. Calculate the coefficients       by using Eq. 14.
6. Restore the estimate image  
7. Determine the new residual        = φαy -        .
8. Assign     to   .
9. Repeat the process with the new residual as         until 

the stop criterion is met.

reSultS

The proposed method was applied on different MRI 
studies with relaxation time T2. The images are norma-
lized to 256 gray levels. The Tables 1 and 2 give quanti-
tative results of the comparison of our method respect 
to other referenced procedures. The quality factors con-
sidered to evaluate the results were the ratio of signal 

peak over noise (PSNR) and the ratio of structural simi-
larity (SSIM). In both cases, the proposed procedure is 
the most effective filtering the Rician noise with σ = 30 
in Table 1 and σ = 40 in Table 2. Whith σ = 30 our method 
enhance the PSNR in 0.3 dB and SSIM in 0.01 as average 
respect to the model NCSR. Whith σ = 40 our method 
enhance the  PSNR in 0.1 dB and SSIM in 0.1 as average 
respect to the model NCSR.

comparISonS

The first column of the Figure 1 contain the visual com-
parison of the result for the slice 3 in the Table 1. The 
Figure 2 shows the results of detail reproduction of our 
method with respect to other procedures that produces 
homogeneous areas. In the Figure 2c the procedure 
tends to homogenize the areas and eliminate fine detail. 
It is a model based in threshold over coefficients and 
dependences between decomposition bands. The Figu-
re 2e shows a model that provides best results in the 
details reproduction. It employs also clustering techni-

ˆxa ˆxa
ˆ ˆ .xx ja=
ˆ ry ˆxja

x̂ ŷ
ˆ ry

Table 1. PSNR/SSIM comparison of the proposed model NLRD versus other methods with σ = 30
         Slice

Method 1 2 3 4 5
Bilateral filter (Tomasi, 1998) 17.8492/0.2821 17.9380/0.2888 18.0132/0.2971 17.8524/0.3032 17.8980/0.3133
Wave atoms (Shashi, 2014) 18.8624/0.3208 18.9041/0.3459 19.3082/0.3649 19.1017/0.3638 19.0240/0.3486
Adaptive wavelet (Chang, 2000) 19.9755/0.5789 19.9251/0.5683 19.9551/0.5687 19.8701/0.5672 19.8772/0.5701
NLM (Wiest, 2008) 20.4395/0.3792 20.7070/0.3792 20.2079/0.3925 19.3309/0.3795 19.5331/0.3954
BM3D (Elahi, 2014) 21.6015/0.5942 21.5754/0.6102 21.4629/0.6260 21.7245/0.6326 21.959/0.6345
Wavelet  LMS (Sathyanarayana, 2011) 22.6426/0.6596 22.3830/0.6284 22.4417/0.6358 22.5646/0.6471 22.7128/0.6713
ASDS˙AR (W.-Dong, 2011) 21.0595/0.6285 21.1247/0.6303 21.0243/0.6397 20.2612/0.6596 19.6958/0.6509
ASDS (W.-Dong, 2011) 21.1890/0.6295 21.2986/0.6317 21.3359/0.6351 20.5224/0.6649 19.9718/0.6592
ASDS AR NL (W.-Dong, 2011) 20.7290/0.6135 20.5857/0.6200 20.1921/0.6305 19.4643/0.6304 18.9621/0.6228
NCSR (W.-Dong, 2013) 23.0987/0.6700 23.0133/0.6766 23.2129/0.7179 23.2232/0.7091 23.1175/0.7056
NLRD 23.4088/0.6919 23.2431/0.6821 23.4217/0.7153 23.5105/0.7159 23.4046/0.713

Note: Bold values indicate the best result NLRD    

Table 2. PSNR/SSIM comparison of the proposed model NLRD versus other methods with σ = 40
Slice

Method 1 2 3 4 5
Bilateral filter (Tomasi, 1998) 16.9089/0.2466 16.9384/0.2525 17.0182/0.2499 16.9395/0.2621 16.9933/0.2703
Wave atoms (Shashi, 2014) 19.5205/0.3288 19.4310/0.3440 19.4958/0.3495 19.3397/0.3488 19.4218/0.3510
Adaptive wavelet (Chang, 2000) 18.2653/0.4777 18.2856/0.4982 18.3301/0.4836 18.2613/0.4903 18.3956/0.4864
NLM (Wiest, 2008) 19.5119/0.3258 19.5334/0.3494 19.1726/0.3384 19.0765/0.3435 19.1391/0.3327
BM3D (Elahi, 2014) 19.5697/0.5412 19.5839/0.5709 19.4429/0.5718 19.4253/0.5842 19.4549/0.5908
Wavelet LMS (Sathyanarayana, 2011) 19.2992/0.5837 19.1156/0.5677 19.0800/0.5625 19.0805/0.5709 18.8920/0.5673
ASDS˙AR (W.-Dong, 2011) 19.7954/0.5380 19.8492/0.5491 19.8967/0.5740 19.9407/0.5951 20.0649/0.6025
ASDS (W.-Dong, 2011) 19.8506/0.5365 19.9209/0.5482 19.9733/0.5719 20.0225/0.5929 20.2000/0.6016
ASDS AR NL (W.-Dong, 2011) 19.5744/0.5404 19.5763/0.5476 19.6133/0.5767 19.5824/0.5937 19.5985/0.5958
NCSR (W.-Dong, 2013) 19.9763/0.5588 19.7573/0.5481 20.0824/0.5716 20.1234/0.5794 20.0236/0.5727
NLRD 20.0926/0.6019        19.8735/0.6257        20.1663/0.6309          20.2378/0.6262        20.2901/0.6463
Note: Bold values indicate the best result NLRD    
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Figure 2. Visual comparison of results in Table 1, a) Original Image, b) Noisy image, c) Wavelet LMS method, d) Proposed 
NLRD method, e) NCSR method, f) ASDS method σ = 40

Figure 1. Visual comparison of results in Table 1, second column left to right
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ques but the probabilistic inference is made with a fixed 
Gaussian function. The results of the Figure 2f lost fine 
details and the reconstruction tends to expand the 
structures. It is a model in which the group of coeffi-
cients are selected with an adaptive procedure for the 
estimation. In the case of the Figure 2d the result is a 
more detailed reconstruction of fine structures in areas 
from low to median-high levels of signal and in general 
a reconstruction more near to the original image. The 
estimation using a Rician noise PDF that change the 
width proportionally to the level of the signal makes 
more difficult the estimation with wide PDF. It is the 
reason for the presence of noise in high levels of signal. 
This effect could be avoided using equalization, norma-
lizing or changing the ranges of the image’s levels, this 
technique could be treated in future work.

In the proposed method, the approach of the ex-
haustive search and clustering is realized over ayr. This 
give an increment of the SSIM and PSNR values over  
all the slices analyzed. The method is robust for high 
levels of noise, in our comparison it reach σ = 40. The 
results obtained in the Tables 1 and 2 shows an enhan-
cement of the denoising techniques almost in chronolo-
gical sense in relation with the publication of the 
concepts and procedures. The most recent methods use 
techniques for grouping and reduction of the informa-
tion to be processed as in ASDS, NCSR and our propo-
sed model Non Local Rician Denoise (NLRD).

The models under comparison use different techni-
ques for noise treatment. The wavelet denoising method 
uses the background estimation for the level of noise 
and clusters similar coefficients. Then in the groups, the 
level of noise is subtracted. In this case, more fine bands 
are more affected by noise and the upper bands are as-
sumed the desired signal. The PDF in the Rician case 
combines signal and noise in the model shown in the 
Eq. 7. Then, the MAP formulation 9 gives the possibility 
of  ἃx estimation when a relationship is established bet-
ween the unknown original coefficients ax and the noisy 
coefficients  ay through of  b. The MAP estimation is 
carried out over the sparse domain of clusters of pat-
ches of the image. The separation of the image in diffe-
rent groups of patches allows to carry out a precise 
approximation of b and the     coefficients. 

concluSIon

The proposed method combines the PDF of the Rician 
noise and the redundancies of the structures of the ima-
ge for denoising. The spatial redundancy of the patches 
is exploited using the PCA classifier and the KSVD dic-
tionary learning technique. The noise estimation was 

carried out with a desired precision after some itera-
tions. The Rician noise distribution is analyzed on the 
image decomposed in sub-regions and clusters. The 
mean of the group of patches is an important considera-
tion because the Rician distribution changes the width 
according to the level of the real signal. Due to the 
width changes of the PDF the model must enhance the 
response for high levels of signal, despite of this the ge-
neral result brig a good detail reproduction for the 
areas of the image. The utility of the sparse representa-
tion of the image to characterize the noise distribution 
was shown. For the estimation of local values, the re-
dundancies around all the residual image are exploited. 
The method shows that the PDF of the Rician noise can 
be used in a MAP formulation using an estimation of 
the residual image as a link between the noisy and the 
estimated image. The levels of the noisy and estimated 
images are presents in the PDF. The methods of sparse 
representation, clustering and noise estimation selec-
ted for the procedure are robust for adaptation in the 
case of Rician noise. It also shows to outperform the 
results of methods in the state-of-the-art. In future 
works, the procedure will be tested with other models 
of noise distributions. Proposing a more precise initial 
reduction of the noise and the processing with multi-
resolution decomposition of the image. Other interest 
of this work is the automatic determination of the hy-
per-parameters of the PDF by using the input image 
and the proposed model. Also more work is required 
to avoid the residual noise in high levels of signal 
using equalization, normalizing or changing the ran-
ges of the image’s levels.

anexo a

K-MEANS ANd PCA CluStEriNg

The PCA algorithm is a projection method in patter re-
cognition for decorrelation,  (Fukunaga, 1991; Zhang, 
2010). In our model it is carried out over a matrix of 
extracted patches as vectors in consecutive columns;
    ∈ Rn2 × MN where (M + p - 1)× (N + p - 1)
are the dimensions of the input data. The K-MEANS 
algorithm gives k clusters Qk from the matrix  k,  
QK∈       . The covariance matrix of the centralized data 
      is Ω. A group of values ck where k ∈ {1...nc} are selec-
ted with distance d = max (   )/nc , in our case nc = 80. Each 
column Ui is associated with a center ck in the form 
                        . The clusters Qk are obtained and a new 
center ck over Qk is updated. The process is iterated until 
the number of patches in each cluster Qk maintain a 
constant value.

ˆxa

Û

Û
Û

Û
Û

2
ˆmin

k
k kc

U c-
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Ω = ΨΛΨT

Where Ψ and Λ are the eingenvector matrix and the 
eigenvalues matrix. The eigenspace of the data    k is 
named Δ and calculated as: 

Δh = UkΨ

In order to find the more representative patches centers  
(i,j) of      a threshold th for the major elements in Λ is 
selected where, also the corresponding eigenvectors are 
used to find a minimum distance as:

Where           are each patch in       ,        is calculated with 
the  th condition, ph (pos) denotes the more representati-
ve patches in the cluster      .
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