
Ingeniería Investigación y Tecnología

volumen XX (número 2), abril-junio 2019 1-10
ISSN 2594-0732 FI-UNAM artículo arbitrado
Información del artículo: Recibido: 20 de junio de 2017, reevaluado: 21 y 23 de junio de 2017 y 24 de agosto de 2018, aceptado: 7 de enero de 2019
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license
http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

Abstract

In this work we have developed a digital signature protocol using hash functions that once implemented on mobile devices have
demonstrated to be secure and efficient. It has been incorporated a model for a Certification Authority to exchange public keys bet-
ween users. This work constitutes an experimental research, which bears a certain resemblance to theoretical research, but is not
intended to propose a new theory, but to establish the behavior of a system to know its characteristics, in order to improve its
knowledge and/or its performance. The hash signature system was tested on mobile communication devices. The experimental re-
sults show that the hash signature improves the efficiency to generate the cryptographic keys and the signing and verification proces-
ses when compared to ECC. Likewise, when generating 2048 keys, the hash signature is faster than RSA. In addition, the larger RSA
keys consume a significative time, while the hash does not require to increase the size of the keys. Although we have not included
here a formal analysis about the protocol, we highlight some points that improve the security of the proposed protocol. Finally, this
work constitutes a new approach to public key cryptography based on hash functions that could be used to make digital signatures
in electronic commerce. This method is suitable for mobile network devices due to the high speed and low hardware requirements
of the hash functions. The method described here, which is compatible with hash functions, belongs to the field of post-quantum
cryptography. The security of the method is based on the security of the hash cryptography, which is widely known and discussed.
Keywords: Hash function, hash chain, Merkle tree, digital signature, mobile devices.

Resumen

En este trabajo se ha desarrollado un protocolo de firma digital utilizando funciones hash que demuestra que es seguro, efciente y
adecuado para operar en dispositivos móviles. Además, se desarrolló el modelo de una Autoridad Certificadora para el intercambio
seguro y efciente de llaves públicas. El método que se utilizó fue la investigación experimental, que tiene cierta semejanza con la
investigación teórica, pero no tiene por objeto plantear una teoría nueva, sino establecer el comportamiento de un sistema para
conocer sus características, a fin de mejorar su conocimiento y su rendimiento. El sistema de firma hash fue implementado en dispo-
sitivos móviles. Los resultados experimentales demuestran que la firma hash mejora la eficiencia para generar las claves y los procesos
de firma y verificación cuando se compara a ECC. Asimismo, al generar 2048 claves la firma hash es más rápida que RSA. Además,
las claves RSA más grandes consumen mucho tiempo, mientras que el sistema hash no requiere aumentar el tamaño de las claves.
Aunque no se ha incluido un análisis formal sobre la seguridad del protocolo, se destacan algunos puntos que mejoran la seguridad
del protocolo propuesto. Finalmente, este trabajo constituye un nuevo enfoque para la criptografía de llave pública basada en fun-
ciones hash que podrían aprovecharse para realizar firmas digitales en comercio electrónico. Este método es adecuado para disposi-
tivos de red móvil debido a la velocidad y los requisitos de hardware de las funciones hash. El método descrito aquí, el cual es
compatible con las funciones hash, pertenece al campo de la criptografía post-cuántica. La seguridad del método se basa en la segu-
ridad de la criptografía hash, la cual es ampliamente conocida y discutida.
Descriptores: Función hash, cadena hash, Árbol de Merkle, firma digital, dispositivos móviles.

Public hash signature for mobile network devices
Firma electrónica por medio de funciones hash para dispositivos móviles

Lizama-Pérez Luis Adrián
Universidad Politécnica de Pachuca
Departamento de Posgrado
E-mail: luislizama@upp.edu.mx
http://orcid.org/0000-0001-5109-2927

Montiel-Arrieta Leonardo Javier
Universidad Politécnica de Pachuca
Departamento de Posgrado
E-mail: leo8677@hotmail.com
https://orcid.org/0000-0002-9259-535X

Hernández-Mendoza Flor Seleyda
Universidad Politécnica de Pachuca
Departamento de Posgrado
E-mail: flors.hm@gmail.com
https://orcid.org/0000-0002-3110-5599

Lizama-Servín Luis Adrián
Centro de Ingeniería y Desarrollo Industrial, Conacyt
Departamento de Posgrado
E-mail: luis.lizama@alumni.fh-aachen.de
https://orcid.org/0000-0002-4035-1361

Simancas-Acevedo Eric
Universidad Politécnica de Pachuca
Departamento de Posgrado
E-mail: ericsimancas@upp.edu.mx
https://orcid.org/0000-0001-7823-709X

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018
mailto:luislizama%40upp.edu.mx?subject=
http://orcid.org/0000-0001-5109-2927
mailto:leo8677@hotmail.com
https://orcid.org/0000-0002-9259-535X
mailto:flors.hm@gmail.com
https://orcid.org/0000-0002-3110-5599
mailto:luis.lizama%40alumni.fh-aachen.de?subject=
https://orcid.org/0000-0002-4035-1361
mailto:ericsimancas@upp.edu.mx
https://orcid.org/0000-0001-7823-709X

Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM2

Public hash signature for mobile network devices

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

Introduction

Today, cryptographic hash functions constitute a main
component of a variety of authentication protocols to
achieve data integrity and non-repudiation services.
Hash cryptography has been implemented throughout
a variety of algorithms which include the Message Di-
gest Algorithm (MD5 (Rivest, 1992)), the Secure Hash
Algorithm SHA-1(Eastlake 3rd and Jones, 2001), SHA-2
(P. U. B. FIPS, 2002) and SHA-3 (DRAFT, 2014). One of
the major advantages of hash cryptography is that it is
not based on modular mathematics, so it does not re-
quire large prime computations and it is suitable for
small mobile computing devices. Hash cryptography is
resistant to quantum-crypto-analysis (Perlner and Coo-
per, 2009), which is not the case of modular arithmetic
that is based on the Integer Factoring or the Discrete
Logarithm Problem (Nielsen and Chuang, 2010; Datta-
ni and Bryans, 2014; Dridi and Alghassi, 2016) due to
Shor’s factoring algorithm for quantum computation
(Shor, 1994). Moreover, special purpose devices run
hash chains in the order of 300 peta hashes per second
(Zohar, 2015). Hash based signatures run at least 104
faster than modular-arithmetic based methods (Muñoz
et al., 2004).

Since Leslie Lamport introduced hash chains (Lam-
port, 1979; Lamport, 1981c; Hu, et al., 2005), some tech-
nologies implement this algorithm as the S/Key One
Time Password (OTP) (Haller, 1995) but few attempts
have been made to get authentication protocols based
on hash chains (Perrig et al., 2005; Anderson et al., 1998).
Other protocols have been developed under hash
functionality as Time-based One-Time Password (RFC
(M’Raihi et al., 2011)) or HMAC-based One-Time Pas-
sword (RFC (M’Raihi et al.,2005)).

An attempt to achieve a public key cryptosystem
by means of hash cryptography is the One Time Signa-
ture (OTS) method developed by Leslie Lamport
(1979). However, in this protocol the message signature
process can be executed only once. OTS can be optimi-
zed through some methods (Merkle, 1982; 1987; 1989;
Buchmann et al., 2009). Using a Merkle tree, it is possible
to increase the number of messages that can be signed,
however one pair of public/private OTS key must be
generated by each leaf and they must be stored in the
user end device for future message signing.

On the other side, modular-arithmetic signature
schemes include the Digital Signature Algorithm pro-
posed by the US National Institute of Standards
and Technology (NIST) (N. FIPS, 1998; Fips, 2000; P. U.
B. FIPS, 2009), the RSA algorithm (Rivest et al.,
1978) and the Probabilistic Signature Scheme which

is part of the standard (P. U. B. FIPS, 2009) and the
Elliptic Curve Digital Signature Algorithm (ECDSA)
(Triwinarko, 2006) which is also included in (P.U.B.
FIPS, 2009).

Such algorithms are based on modular arithmetic
computations, which requires in some cases large
prime numbers and in other cases modular multipli-
cation and/or exponentiation. Moreover, the gene-
ration and preparation of the pair of public/private
key is computationally costly. In contrast, hash te-
chnology is advantageous for potential use in mobi-
le and low-performance hardware devices.

Since there is no quantum algorithm to efficiently
analyze hash functions (Perlner and Cooper, 2009), it
is assumed that cryptography based on hash
functions, as Merkle trees, are post-quantum
(Merkle, 1982; Buchmann, 2016). However, for ex-
haustive search, Grover’s quantum algorithm reduce
the search space approximately to . This leads to a
recommended hash length of 256 for (Buchmann et
al., 2016).

According to (Buchmann et al., 2016) “there are
no hash-based public-key encryption schemes.”
However, multivariate signature schemes exploit
hash functions to get its advantages. As a result,
multivariate cryptography produce signatures spee-
dily and the verification process is time reduced.
Moreover the signatures are shorter than RSA. Un-
fortunately, the key sizes of signatures are still rela-
tively large (Buchmann et al., 2016).

In this work we will introduce a signature scheme
based just on hash functions where the key sizes varies
from 256 to 512 bits. The method is the first known for
public key infrastructure based just on hash functions
and it can be used to achieve Digital Signature servi-
ces. Moreover, it allows the Certification Authority
functionality.

We should remark that hash cryptography is re-
sistant to quantum-crypto-analysis (Perlner and
Cooper, 2009), which is not the case of modular
arithmetic that is based on the Integer Factoring or
the Discrete Logarithm Problem (Nielsen and
Chuang, 2010; Dattani and Bryans, 2014; Dridi and
Alghassi, 2016) due to Shor’s factoring algorithm for
quantum computation (Shor, 1994).

The hash signature algorithm

In this section, we will detail our proposal called the
hash chained signature protocol. However, let us intro-
duce some previous concepts of hash functions and
hash chains.

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

3Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM

Lizama-Pérez Luis Adrián, Montiel-Arrieta Leonardo Javier, Hernández-Mendoza Flor Seleyda, Lizama-Servín Luis Adrián, Simancas-Acevedo Eric

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

Hash function

A hash function takes as input a message which is a
string of bits of arbitrary length, and it produces as an
output a string of bits of fixed length determined by the
hash function. The output is called hash code. The hash
function is expressed as h = f (X) where X corresponds
to the input or message (Nigel, 2016).

Hash functions are characterized by two main pro-
perties:

1. 	 From the computational point of view, it is infeasi-
ble to get the message X if known h.

2. 	 It is infeasible to find two different messages with
the same hash value.

On the other hand, a hash chain is a sequence of va-
lues derived consecutively from a hash function
from an initial value (Figure 1). Due to the proper-
ties of the hash function, it is relatively easy to calcu-
late successively chained values (Dwight, 2011).

The hash chained signature protocol

In our protocol, Alice wants to sign a message and send
it to Bob. Alice and Bob must execute the next steps:

1.	 Alice and Bob generate their pair of public-private
keys.

2.	 They exchange their public keys through the public
channel.

3.	 Alice signs a message using her private key.
4.	 Bob verifies the signature using Alice’s public key.

To generate the keys the following cryptographic
functions are necessary:

1.	 A True (or Pseudo) Random Generator.
2.	 A cryptographic hash function.

To produce the keys Alice (or Bob) generates a small
random number (e.g. 128, 160, 256, 512 bits length).
We call this number the sieve XA (or XB). Now, using
the hash function Alice (or Bob) computes the hash
chain f N A (X A)) where f denotes the hash function of
the system. The exponent N A represents the times the
function is applied over the sieve X A . The public key
is f N A (X A)) whose size corresponds to the hash leng-

th. On the other side, Alice’s secret values (X A , N A)
yield her private keys f NA-i(X A) where 1 ≤ i < NA. Thus,
f NA-1(X A), f NA-1(X A), ... ,f 1 (XA) are the Alice’s private
keys. We represent the keys in Table 1.

To sign a message, it will be used the Hash Message
Authentication Code (HMAC) function (Krawczyk et
al., 1997). Suppose Alice wants to sign a message and
send it to Bob, then Alice and Bob perform the fo-
llowing steps:

1.	 Using a public channel, Alice and Bob exchange
their public keys f NA(X A) and f NB(X B).

 2.	 Applying the HMAC function, Alice signs the
message m using her private key f NA-1.

3.	 Bob sends his private key f NB-1 to Alice. Then Alice
verifies Bob’s authenticator because she computes)
f (f NB-1) which must return Bob’s public key
f NB.

4.	 Only in the case that authentication is verified
successfully Alice sends to Bob the message m
and her private key f NA-1.

5.	 Finally, Bob performs the HMAC computation of
the message denoted as < <m> f NA-1 with f NA-1 to
check the message integrity. In the favorable case,
Bob can be sure that Alice wrote the message.

Table 2 depicts the protocol where the < > symbol repre-
sents the HMAC function. Some significant features of
this hash based signature protocol are:

1.	 Up to our knowledge, this is the first protocol that
uses hash chains for signing message with a private
key. The private key consists of a chain of private
keys of short duration. The seed used to compute
the chain, as well as the private keys remain secret
until the key is used for a transaction. In such a case,
the private key is no more secret and becomes pu-
blic. This process continues until the chain of keys is
renewed.

Table 1. The keys of the Hash Chained Signature protocol, here
1 ≤ i(j)< NA(NB)

User Public Key Private Key

Alice f N A(XA) f NA-i(XA)

Bob f N B(Xβ) f NB-i(XB)

X f 1(X) f 2(X) ... f N-j(X) f N(X)
Figure 1. Simple representation of a hash chain computation

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM4

Public hash signature for mobile network devices

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

2.	 Unlike conventional public key schemes, here the
public and private keys change at each transaction.
That is, the private key is substituted each time. This
is needed in order to authenticate the user, whose
private key is validated by applying the hash
function to the key, the result must be the public
key.

3.	 The protocol is interactive and gives mutual authen-
tication between Alice and Bob. So, it is useful for
one-to-one communication because the destination
authenticates the signed message.

4.	 It is dynamic because every time a private key is re-
vealed it becomes part of the public key. So, verifica-
tion of the public key can be achieved using the
current public key or any key in the public hash
chain.

Table 2. The basic Hash Chained Signature protocol

A → B: <m> f NA-1

A ← B: f
NB -1

A → B: m, f
NA-1

Security analysis

However, Alice and Bob do not have a way to verify the
authentication keys, f NA-1 and f NB-1. The basic Hash
Chained Signature protocol is vulnerable to a Man In
The Middle (MITM) attack because the attacker imple-
ments a replay attack using the keys that she has obtai-
ned previously. So, the attacker can impersonate Alice’s
identity (Table 3 where E denotes the eavesdropper). A
countermeasure to this drawback can be conceived
adding time stamps to the protocol but some flaws can
still be present.

Table 3. MITM attack

E → B: <x>f NE-1

E ← B: f NB-1

E → B: x,f NE-1

A → E: <m>f NA-1

A ← E: f NB-1

A → E: m,f NA-1

E → B: <m´> f NA-1

Despite the MITM attack described before, the basic
Hash Chained Signature protocol is still usable for de-
dicated point-to-point links where as stated before,
each new key can be verified from the previous one,
e.g. f NB- i + 1= f (f NB-i) Once a private key is revealed it

cannot be reused to sign another message. Since Alice
and Bob sign messages such revealing a private key,
over time private keys consume and it will be neces-
sary a method to renew the keys. We discuss this is-
sue later. Let us write the protocol symbolically, for
this assume that i and j are the indexes of the keys
from Alice and Bob, respectively, they must exchange
the index data, see Table 4. The index i (j) increases by
one each time a signature is performed. To verify
Bob’s authenticator Alice computes the hash of the
Bob’s authenticator f NB-j which returns Bob’s public
key, that is f j(f NB-j) = f NB

Table 4. Over time the private keys consume. A private key that
is revealed becomes part of the public key

A → B: <m> f NA- i

A ← B: f
NB- j

A → B: m, f
NA- i, i

Certification authority

To surpass such MITM attack we will introduce the
Certification Authority (CA) to the protocol. But before
discussing the CA, we must mention two protocols that
share some similarities with the hash signature system:

1.	 The Delayed Authentication Message (DEMA) Pro-
tocol presented in (Groza, 2006) is in fact equivalent
to the Hash Chained Signature protocol discussed
here. However, DEMA protocol is aimed for point
to point synchronized connections. In contrast, we
preserve the basic structure of the protocol but we
achieve signature services through the Certification
Authority.

2.	 In (Buldas et al., 2014b) is described a signature
scheme, in which the client computes a Merkle tree
constructed with a hash chain. From the Merkle tree
the user generates his public key. In addition, the
client emits a time stamp to the signature server to
determine the interval the certificate will be valid.
The server generates a hash tree from the time stamp
to be used with the client. In this scheme, the authors
identify a problem: many keys are not used because
they are only valid for a certain period of time. In
(Buldas et al., 2014a) they propose a new scheme
where the main idea is to use the signature message
as a public key revocation. The message includes
the period that the key will be valid. Another diffe-
rence is that the client must store all the created sig-
natures in case of later disputes.

5Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM

Lizama-Pérez Luis Adrián, Montiel-Arrieta Leonardo Javier, Hernández-Mendoza Flor Seleyda, Lizama-Servín Luis Adrián, Simancas-Acevedo Eric

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

The Certification Authority (CA) will be responsible to
maintain the Hash Chained Signature system, registe-
ring new users and exchanging signatures. It must be
remarked that the CA does not store the secret keys of
users, as typically achieved with a Key Distribution
Center (KDC). By contrary, each private key is kept by
its owner and never leaves the user side. The CA just
act forwarding the message signatures between users.
For this purpose, the CA prepares a public key to com-
municate with each user, for example in the case of Ali-
ce the CA generates the public key f NAC,A. As a result,
the CA and Alice maintain a control of the index key
so, the index x increases unitary, x = 1,2, . . . each
time they communicate (Table 5).

Table 5. Alice (or Bob) and the CA maintain an ordered

public key exchange

A → CA: <m> f
NA- x

A ← CA: f NAC,A-x

A → CA: m,f NA-x

In this way, the CA acts as a gateway between Alice and
Bob to exchange their signatures each time they com-
municate. To guarantee non-repudiation Alice sends
the hash of the message she wants to sign. The CA per-
forms message accounting by storing message signatu-
res (she does not store messages themselves). The
complete protocol has been specified in Table 6. We
have included an authentication key of the user, f NA-1
to avoid fake requests to the CA. So, the CA verifies
authenticity before giving any response.

The CA does not have access to private keys of the
users, however she must be in the middle each time a
pair of users want to communicate securely. Therefore,
the computational cost of the CA process would be a
concern for this protocol. However, it is common that
e-transactions in Internet based protocols are verified
by a Third Trusted Party (3TP).

The next step is to develop a method to efficiently
manage the keys of the users. We discuss this question
in the following section.

Table 6. Signature exchange where s0 = f (m),
s1= < s0> f NA

-2 and s2= < s1> f NCA,B
-1>

A → CA: A, B, f NA-1, s1

AC → B: A, s2

AC ← B: f NB-1

A ← CA: f NCA,A-1

A → CA: f NA-2, s0

AC → B: f NA-2, f NCA,B-1,s1

A → B: m

Merkle tree chain

The CA must prepare a public key to communicate
with each user. To accomplish this task the CA imple-
ments a Merkle Tree (Merkle, 1982) whose leafs are de-
served to allocate the pairs of public keys between the
CA and each user. The Merkle Tree will be publicly an-
nounced and the CA identity will be verified through
the computation of the root of the tree.

To validate the identity of the CA each user will re-
ceive the required Hash nodes to compute the Hash
root. However, a pair of leaves of the Merkle Tree will
not be used neither revealed, instead of that they will be
kept secret so that the last leaf will be deserved to bind
the current tree with the next tree of the tree chain. The-
refore, a pair of leaves of each new tree that is concate-
nated to the tree chain is kept secret, Figure 1 shows
this concept.

In the example of Figure 2, the H1.48 leaf in the first
tree is the same leaf identified as H2.41 in the second tree
but H1.47 and H1.48 will remain secret until the tree of root
H2.11 is publicly announced by the AC. The next tree is
computed and publicly announced by the CA once the
first tree reaches half of its total capacity. In the same
way, H2.47 and H2.48 will be kept secret until the new tree
is advertised. In this way, the CA can register new users
to the system and each user can validate the CA identi-
ty. The CA identity is verified through the Hash roots
Hi, 11, where i = 1.2, ...

As time goes, multiple trees are created and the CA
stops creating new trees but she proceeds to assign the

Figure 2. A Merkle tree chain

Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM6

Public hash signature for mobile network devices

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

unused leaves. For this task, the CA enumerates again
the unused leaves and the algorithm is executed again.
A higher order level can be appended to the tree mer-
ging the roots H1, 11 and H2, 11 into a new root, such that
the Merkle tree algorithm keeps running efficiently.

Renewing the certificate

To update her public key Alice computes a new pair of
public/private keys and she signs the new public key
with an older private key. Then, the CA advertises the
key update. Since the new key is signed by Alice and it
is published by the CA the renewing process does not
compromises the security of the protocol. The steps of
the process are represented in Table 7.

Table 7. Renewing a public key. In this example Alice’s current
private key is f NA-i while the corresponding CA’s private key
is f NAC,A -j

A → CA: f NA-i, < f N´A(XA) > f
NA-i-1

A ← CA: f NCA,A-j, < f N´CA,A(X´CA,A) > f
 NCA,A-j-1

A → CA: f N´A(X Á), f
NA-i-1

A ← CA: f N´CA,A(X´CA,A) f
NCA,A-j-1

Multiple CA’s

Multiple CA’s can contribute to decrease the computa-
tional effort of a single CA. To allow interoperability
between multiple CA’s each CA must register with the
other CA, this process is represented in Table 8. Suppo-
se for example, that H1,44 in Figure 1 has been registered

with CA2. Thus, to interconnect the two CA domains it
will be necessary that CAs register mutually.

Table 8 shows the protocol when users are registe-
red to different CA’s. This scheme can be generalized to
multiple CA’s. However, we leave for an ulterior work
the implementation of multiple CA’s and the analysis
of interoperability with multiple domains.

Experimental results

In this section, we describe the results obtained with the
Hash Signature system applying different sizes of the
message. The CA was developed on NetBeans 8.1 in a
computer desktop equipped with Pentium Dual-Core,
4 GB RAM. The client application was built over An-
droid Studio 2.3. Tests were performed on two different
mobile phones. They are detailed in Table 9.

We generated 1024-leaf trees in 5 milliseconds. In
the first test we used the same string as it was used in
(Alese et al., 2012): “ECDLP is believed to be harder
than both the Integer Factorization and Discrete loga-
rithm Problems”. After 10 tests, we take the average
of the elapsed interval. To make comparisons we
take the encryption process as the signature genera-
tion (Alese et al., 2012). The size of the key, in the mo-
bile device and the AC, is the corresponding to SHA-2
(256 bits).

The key generation interval was computed taking
the time to get the random seed x and the time to
compute the public key f N x. Such processes are per-
formed during the user registration with the AC. The

Table 9. Mobile devices used to perform tests

Device Model CPU Android version Internal GB memory

Samsung GT I8190 1 GHz dual core ARM Cortex-A9 4.1.2 Jelly Bean Fou 8

Samsung SM G920I 2.1 GHz, 1.5 GHz Octa-Core 6.0.1 Marshmallow 32

Table 8. Alice wants to send a signed message to Bob but Alice is registered with CA1 while Bob is with CA2.
Here, s0 = f (m), s1 = <s0 > f NA - 2, s2 = <s1> f NCA1, CA2 - 2 and s3 = <s2> f NCA2, B - 2

,A → CA1: A, B, f NA- 1, s1

CA1 → CA2: A, B, f NCA1, CA2 - 1, s2

AC2 → B: A, f NCA2, B - 1, s3

B → AC2: f N B - 1

CA2 → CA1: f NCA2, CA1 - 1

CA1 → A: f NCA1, A - 1

A → CA1: f NA - 2, s0

CA1 → CA2: f N A - 2, f N CA1, CA2-2, s1

CA2 → B: f N A - 2, f N CA1, CA2-2, f N CA2 , B - 2s2

A → B: m

7Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM

Lizama-Pérez Luis Adrián, Montiel-Arrieta Leonardo Javier, Hernández-Mendoza Flor Seleyda, Lizama-Servín Luis Adrián, Simancas-Acevedo Eric

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

signature interval includes the computation of f N x-1
for user authentication, f N x-2 to sign the message,
s 0 , H M AC and the authentication of the AC. To ve-
rify the signature we compute f Nx-1, s0, s1, s2 and the
comparison process performed by the AC. Results from
the CA with respect to (Alese et al., 2012) are compared
in Table 10. In adittion, Table 11 compare the performan-
ce of the hash signature system with (Mahto et al., 2016)
after computing a message input of 8 and 256-bit.

If we compare the performance of the hash signa-
ture system on mobile devices with a 256-bit message
we get the results shown in Table 12. Results are com-
puted taking the average of twenty rounds. Although
some parameters do not match (Tayoub et al., 2013)
still are useful to compare the performance on mobile
devices.

To guarantee the non-repudiation service, the
CA maintains a log of the transactions between
users. In Table 13 we show an example of an accoun-
ting record after an electronic transaction has been
performed between Alice (A) and Bob (B) through
the AC.

The Android App that was developed for the hash
signature system occupies 4.57 Mbytes. Figure 5 shows
its interface. In general terms, we can describe the beha-
vior of the system when Alice wants to sign a message
m for Bob: Alice sends the signature code to the CA and
she also sends a notification to Bob. He gets the valida-
tion code from the CA. Then, Alice shares him the mes-
sage m (or file) through the Internet, e.g. a social

network. Finally, Bob verifies the validation code along
with the message m.

Discussion

Although we don’t have included a formal analysis
about the security of the protocol, some points that en-
hance the security of the proposed protocol are: it is
supported on the properties of hash functions that have
been broadly discussed in the field. Despite this, we be-
lieve that a MITM could be tried by the attacker when
users register with the AC. However, A MITM attack is
limited by the following factors:

•	 The MITM could attack two randomly users of the
Merkle tree. Otherwise, the attacker must know the
exact moment in which the users A and B will be
registered before the AC, in order to attack the no-
des.

•	 Higher security certificates can be managed during
the registration of users with the AC, which makes
the attack more difficult.

•	 To block the original message, the malicious entity
would have to manipulate the application software
through the message is sent, along the message ser-
vice of the mobile phone or any application as social
network. In this case, the attacker must create false
messages and notifications.

Table 10. Results of the SHA-256 hash signature are compared with respect to Alese et al. (2012), values are represented in milliseconds

Size of Key (bits) Key Generation (ms) Signature Generation (ms) Signature Verification (ms)

RSA 1024 1312.7±190.8 166.9±46.3 15.7±0.4

RSA 2048 6804.6±2540.6 290.2±29.8 122.4±9.1

RSA 3072 32180.0±18947.7 310.5±75.5 293.2±71.8

RSA 7680 322843.0±233809.0 352.1±154.1 2932.8±44.7

RSA 15360 N/A N/A N/A

ECC P-160 198.6±12.5 17.9±4.9 15.7±0.1

ECC P-224 208.3±13.4 95.9±6.8 18.7±5.5

ECC P256 243.5±22.2 35.1±6.1 21.1±6.8

ECC P384 294.0±26.5 74.9±7.1 47.7±3.2

ECC P-521 447.8±90.9 138.2±4.9 109.9±0.3

SHA-256 hash signature 240.25 39.21 12.5

Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM8

Public hash signature for mobile network devices

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

•	 The attacker would have to build a fake website of
the CA, which would be detectable because the
page is expected to be of public knowledge.

Figure 3. The hash signature system SHA-
256 is compared to Alese et al. (2012).
These results show that the signature with
SHA-256 is similar to ECC P256 (key
and signature generation) but faster in
signature verification. With respect to RSA
our proposal is faster most of the times

Table 12. The hash signature performance is compared against ECC (ECDSA) and RSA (results in milliseconds)

ECC (ECDSA) (Tayoub, Walid; Somia, Lakehali; Chikouche, 2013)

Device Size key Operation (bits) Generation key
(ms)

Signature
(ms)

Verification
(ms)

GT-S6102

160 767 561 1285
224
521

615 699 1217
595 562 141

GT-I9100

160 303 412 681
224
521

443 360 624
595 562 141

RSA (Tayoub, Walid; Somia, Lakehali; Chikouche, 2013)

GT-S6102
1024 1088.66 14.33 1
2048
15360

3896 77.66 1
>1h \ \

GT-I9100

1024 1150 28 0.33
2048
15360

2341.66 95 1
>1h \ \

Hash Signature system with SHA-256
GT-I8190 256 1678.47 566.75 468.91
SM-G920I 256 158.55 128.65 94.22

Table 11. The processes of signature generation (SG) and signature verification (SV) are
compared between the hash signature system (AC with SHA-256) and Mahto et al., 2016
taking an 8 / 256-bit message input (results are computed in milliseconds)

8 bits 256 bits

Size of Key SG (ms) SV (ms) SG (ms) SV (ms)

RSA 1024 30.7 754.3 550 19310

RSA 2048 29.9 2707.5 580 102030

RSA 3072 30.5 6940.9 560 209600

ECC 160 488.5 1326.7 7920 22880

ECC 224 2203 1586.3 39700 26330

ECC 256 3876.3 1769 58430 27400

AC with SHA-256 32.7 18.5 39.87 17.8

9Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM

Lizama-Pérez Luis Adrián, Montiel-Arrieta Leonardo Javier, Hernández-Mendoza Flor Seleyda, Lizama-Servín Luis Adrián, Simancas-Acevedo Eric

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

Table 13. The CA maintains registers of the transactions to provide accounting services. Here is an example: f N A - i - 1
where i = counter of Sender. Also, if f NB - j - 1 counter of Receiver, s0 = f(m) and s1 = <s0> f N A - i - 1

Username of Sender Alice

Authenticity key of the issuer (f NA - 1) d9e3ac586c94e9f4fcbc3ebdc6bde5e9e059ffc569e78909d574a90d23981cc9

HMAC of Message Hash (s1) b5500c57b24aff2e8f0a223a8db300760f7bbc7cb382ccb8c5c4dc5547a8c0a3

Hash of Message (s0) b221d9dbb083a7f33428d7c2a3c3198ae925614d70210e28716ccaa7cd4ddb79

Key for HMAC Sing (f NA - 2) 0ff4d4bd8d0190b1579d57435abc4ba3c19f6b79b7e16017d586603d18aeae5b

Counter of Sender (i) 3

Username of Receiver Bob

Key of Receiver (f NB - j) bacab276d9268c4d5c2d48ca8ce0bd3d8ad3b93be4b7370abe6f6b93f3ca7efd

Counter of Receiver (j) 2

Figure 5. The interface of the hash signature system

Figure 4. The hash signature system SHA-256 is
compared to Tayoub et al. (2013). These results show
that the hash signature system 256-bit, running in the
SM-G9201 device is faster than ECC (ECDSA) 224-bit
and RSA 1024-bit when comparing the time required
for key generation, signature and verification

Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM10

Public hash signature for mobile network devices

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

Conclusions

It has been discussed a method to achieve a Digital Sig-
nature protocol based on hash functions. When compa-
red to ECC, experimental results on mobile devices
demonstrate that the hash signature improve the effi-
ciency to generate the keys and the signing and verifi-
cation processes. At the same time, the hash signature is
faster than RSA when generating 2048 keys. In addi-
tion, larger RSA keys consume much time while the
hash system does not require to increase the size of the
keys.

The hash signature system defines the Certification
Authority to provide certification of users to guarantee
the non-repudiation service. In such a case, the genera-
tion, sign and verification processes is faster than RSA
and ECC.

The method discussed here which is supported by
hash functions, belongs to post-quantum cryptogra-
phy, and seems to be suitable for mobile network devi-
ces often limited in hardware capacities. Security of the
method is highlighted because it is founded on the
well-known security of hash cryptography.

References

Alese, B.K., Philemon, E.D., Falaki, S.O. (2012). Comparative
analysis of public-key encryption schemes. International Jour-
nal of Engineering and Technology, 2(9), Citeseer, 1552-68.

Anderson, R., Bergadano F., Crispo B., Lee J.H., Manifavas Ch.,
Needham R. (1998). A new family of authentication protocols.
ACM SIGOPS Operating Systems Review, 32(4). ACM, 9-20.
https://doi.org/10.1145/302350.302353

Buchmann A., Johannes B., Butin D., Florian G., Petzoldt A.
(2016). Post-Quantum cryptography : state of the art. The New Co-
debreakers. Berlin Heidelberg: Springer, 88-108. https://doi.
org/10.1007/978-3-662-49301-4_6

Buchmann, J., Dahmen, E., Szydlo, M. (2009). Hash-Based digital
signature schemes. In: Post-Quantum Cryptography, Sprin-
ger, 35-93. https://doi.org/10.1007/978-3-540-88702-7_3

Buldas, A., Laanoja, R., Truu, A. (2014a). Efficient implementation of
keyless signatures with hash sequence authentication. IACR Cryp-
tology ePrint Archive, 689.

Buldas, A., Laanoja, R., Truu, A. (2014b). Efficient quantum-immune
keyless signatures with identity. IACR Cryptology ePrint Archi-
ve. Citeseer. 321.

Dattani, N.S. and Bryans, N. (2014). Quantum factorization of
56153 with only 4 qubits. arXiv Preprint arXiv:1411.6758.

DRAFT, FIPS PUB. (2014). 202. SHA-3 Standard: Permutation-Ba-
sed hash and extendable-output functions. Information Tech-
nology Laboratory, National Institute of Standards and
Technology. Recovered on May 2014 at http://csrc.Nist. Gov/

publications/drafts/fips-202/fips_202_draft.Pdf. https://doi.
org/10.6028/NIST.FIPS.202

Dridi, R. and Alghassi, H. (2016). Prime factorization using quan-
tum annealing and computational algebraic geometry. arXiv
Preprint, arXiv:1604.05796. https://doi.org/10.1038/srep43048

Dwight, H. (2011). Hash chain. In: Encyclopedia of cryptography
and security, Springer. 542-543. https://doi.org/10.1007/978-1-
4419-5906-5

Eastlake, 3rd, D. and Jones, P. (2001). US secure hash algorithm 1
(SHA1). https://doi.org/10.17487/RFC3174

FIPS, NIST. (1998). 186-1. Digital Signature Standard.
FIPS, PUB. (2000). 186-2. Digital Signature Standard (DSS). Natio-

nal Institute of Standards and Technology (NIST).
FIPS, PUB. (2002). 180-2. Federal information processing stan-

dards publication. SECURE HASH STANDARD, National
Institute of Standards and Technology.

FIPS, PUB. (2009). 186-3. Digital Signature Standard (DSS).
Groza, B. (2006). Using one-way chains to provide message

authentication without shared secrets. In: Security, privacy
and trust in pervasive and ubiquitous computing, 2006. Sec-
PerU, Second International Workshop, 82-87. http://doi.ieee-
computersociety.org/10.1109/SECPERU.2006.21

Haller, N. (1995). The S/KEY One-Time password system.
Hu, Y.C., Jakobsson, M., Perrig, A. (2005). Efficient constructions

for one-way hash chains. In: International Conference on
Applied Cryptography and Network Security, 423-41. https://
doi.org/10.1007/11496137_29

Krawczyk, H., Canetti, R., Bellare, M. (1997). HMAC: Keyed-Has-
hing for message Authentication. https://doi.org/10.17487/
RFC2104

Lamport, L. (1981) Password authentication with insecure com-
munication. Communications of the ACM, 24(11), 770-772.
https://doi.org/ 10.1145/358790.358797

Lamport, L. (1979). Constructing digital signatures from a one-
way function.

M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.
(2005). Hotp: An hmac-based one-time password algorithm.
https://doi.org/ 10.17487/RFC4226

M’Raihi, D., Machani, S., Pei, M., Rydell, J. (2011). Totp: time-based
one-time password algorithm. https://doi.org/ 10.17487/RFC6238

Mahto, D., Ali-Khan D., Kumar-Yadav D. (2016). Security analysis
of elliptic curve cryptography and RSA. In: Proceedings of the
World Congress on Engineering, Vol. 1.

Merkle, R.C. (1982). Method of providing digital signatures. Goo-
gle Patents.

Merkle, R.C. (1987). A digital signature based on a conventional
encryption function. In: Advances in Cryptology, CRYPTO
87, 369-78. https://doi.org/10.1007/3-540-48184-2_32

Merkle, R.C. (1989). A certified digital signature. In: Conference
on the Theory and Application of Cryptology, 218-38.

Muñoz, J.L., Forne, J., Esparza, O., Soriano, M. (2004). Certificate
revocation system implementation based on the merkle hash

https://doi.org/10.1145/302350.302353
https://doi.org/10.1007/978-3-662-49301-4_6
https://doi.org/10.1007/978-3-662-49301-4_6
https://doi.org/10.1007/978-3-540-88702-7_3
http://csrc.Nist. Gov/publications/drafts/fips-202/fips_202_draft.Pdf.
http://csrc.Nist. Gov/publications/drafts/fips-202/fips_202_draft.Pdf.
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1038/srep43048
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.17487/RFC3174
http://doi.ieeecomputersociety.org/10.1109/SECPERU.2006.21
http://doi.ieeecomputersociety.org/10.1109/SECPERU.2006.21
https://doi.org/10.1007/11496137_29
https://doi.org/10.1007/11496137_29
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://doi.org/%2010.1145/358790.358797
https://doi.org/%2010.17487/RFC4226
https://doi.org/%2010.17487/RFC6238
https://doi.org/10.1007/3-540-48184-2_32

11Ingeniería Investigación y Tecnología, volumen XX (número 2), abril-junio 2019: 1-10 ISSN 2594-0732 FI-UNAM

Lizama-Pérez Luis Adrián, Montiel-Arrieta Leonardo Javier, Hernández-Mendoza Flor Seleyda, Lizama-Servín Luis Adrián, Simancas-Acevedo Eric

http://dx.doi.org/10.22201/fi.25940732e.2019.20n2.018

tree. International Journal of Information Security, 2(2),. 110-24.
https://doi.org/ 10.1007/s10207-003-0026-4

Nielsen, M.A. and Chuang, I.L. (2010). Quantum computation and
quantum information. Cambridge university press. https://doi.
org/10.1063/1.1428442

Nigel, P.S. (2016). Hash functions, message authentication codes and
key derivation functions, Springer International Publishing, 271-
294. https://doi.org/10.1007/978-3-319-21936-3_14

Perlner, R.A. and Cooper, D.A. (2009). Quantum resistant public
key cryptography: A survey. In: Proceedings of the 8th Sym-
posium on Identity and Trust on the Internet, 85-93. https://
doi.org/10.1145/1527017.1527028

Perrig, A., Canetti, R., Doug, J.T., Song, D. (2005). The TESLA
broadcast authentication protocol. RSA CryptoBytes 5. RSA.

Rivest, R. (1992). The MD5 Message-Digest Algorithm. https://doi.
org/10.17487/RFC1321

Rivest, R.L., Shamir, A., Adleman, L. (1978). A Method for obtai-
ning digital signatures and Public-Key cryptosystems. Com-
munications of the ACM, 21(2), ACM, 120-26. https://doi.
org/10.1145/359340.359342

Shor, P.W. (1994). Algorithms for quantum computation: Discrete
logarithms and factoring. In: Foundations of Computer Scien-
ce, 1994 Proceedings, 35th Annual Symposium, 124-34.
https://doi.org/10.1109/SFCS.1994.365700

Tayoub, W., Lakehali, S., Noureddine, C. (2013). Implementation
of Public-Key cryptographic systems on embedded devices
(case : Computation speed).

Triwinarko, A. (2006). Elliptic curve digital signature algorithm
(ECDSA). Program Studi Teknik Informatika ITB, Ban-
dung.

Zohar, A. (2015). Bitcoin: Under the hood. Communications of the
ACM, 58(9). ACM, 104-13. https://doi.org/10.1145/2701411

https://doi.org/%2010.1007/s10207-003-0026-4
https://doi.org/10.1063/1.1428442
https://doi.org/10.1063/1.1428442
https://doi.org/10.1007/978-3-319-21936-3_14
https://doi.org/10.1145/1527017.1527028
https://doi.org/10.1145/1527017.1527028
https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC1321
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/2701411

