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Abstract

The well known Law of Sines for tri an gles is care fully an a lyzed to gether with its stan dard proof
and based on that anal y sis it is ex tended to the tet ra he dron and simplices of four and more di-
men sions. The cru cial step in the proof of the ex ten sion to the tet ra he dron starts by representing
each tri an gle in the skin (sur face) of the tet ra he dron as a vec tor in three-dimensional spac e
whose mag ni tude is equal to the area of the tri an gle and which is nor mal to the plane of the tri-
an gle. The sum of these four vec tors is the zero vec tor when the faces are prop erly ori ented. The
next step is to take the vec tors and pro ject them upon a di rected line that is si mul ta neously per-
pen dic u lar to two of the vec tors. The sum of the pro jec tions must be zero, but be cause the directed
line is or thogo nal to two of them it must also be or thogo nal to the sum of the vec tors rep resent ing
the two other faces of the tetrahe dron. There areat least twosim ple geomet rical in ter pretationsto
the main re sult: first, choos ing two dis joint pairs of faces of the tet ra he dron the edge join ing the
first pair of faces is or thogo nal to the sum of the vec tors rep re sent ing the two other faces; second,
thevol umes of two par al lel epi peds formed with trios of vec tor rep re sen ta tion of facef the tet rar
hedron areequal. The result is ex tended to simplices of n di men sions by rep re senting the skin
of the sim plex by n vec tors or thogo nal to the hyperplanes where the el e ments of the skin lie.
Since for n-dimensional spaces it is pos si ble to find a vec tor vsimultaneaously or thogo nal to
n—1 vec tors, the same idea is ap plied and the pro jec tions of the sum of the last two vec tors rep re
senting the “faces” of the skin must be or thogo nal to v. The vec tor prod uct of n— 1 vectorsin n
dimensional space is used to ob tain v. Asimple numerical exam pleis given.

Keywords: Law of Sines, tet ra he dron, sim plex, pro jec tion, vec tor prod uct

Resumen
La conocida Ley de los Senos para los tridngulos es analizada cuidadosamente
junto con su demostracién estandar, con base en dicho andlisis se le extiende al
tetraedro y a simplejos de cuatro y mas dimensiones. El paso crucial en la
demostracion de la extension al tetraedro comienza representando cada
triangulo en la piel (superficie) del tetraedro como un vector en el espacio tridi-
mensional, cuya magnitud es igual al &rea del tridngulo y es normal al plano en el
que esté el triangulo. La suma de estos cuatro vectores es el vector cero cuando
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las caras estan adecuadamente orientadas. El siguiente paso es tomar los
vectores y proyectarlos sobre una linea dirigida, que es simultaneamente perpen-
dic ular a dos de ellos. La suma de las proyecciones debe ser cero, pero debido a
que la linea dirigida es ortogonal a dos de ellos, también debe ser ortogonal a la
suma de los vectores que representan a las dos caras restantes del tetraedro. Hay
por lo menos dos interpretaciones geométricas sencillas del resultado principal;
primero, si se escogen dos pares disjuntos de caras del tetraedro, la arista que los
une al primer par es ortogonal a la suma de los vectores que representan las caras
del segundo par; segundo, los volimenes de dos paralelepipedos formados con
dos trios de vectores que representan las caras son iguales. El resultado se
extiende a simplejos de cuatro y mas dimensiones, representando la piel del
simplejo n-dimensional por medio de n + 1 vectores ortogonales a los
hiperplanos donde yacen los elementos de la piel. En vista de que en un espacio
de n dimensiones es posible encontrar un vector v simultaneamente ortogonal
a n-1 vectores, se aplica la misma idea y las proyecciones de la suma de los
ultimos dos vectores que representan las “caras” de la piel del simplejo deben ser
ortogonales av. Se utiliza el producto vectorial entre n — 1 vectores en n
dimensiones para encontrar v. Se muestra un ejemplo numérico.

Descriptores: Ley de los Senos, tetraedro, simplejo, proyeccion, producto

vectorial.

Introduction

The Law of Sines is one of the importanttheo
rems of Plane Geometry and Trigonometry
whose importance is at a par with the Law of
Cosines and is right behind the Pythagorean
Theorem,whichaccordingtoseveralauthorsis
the most important theorem in all of mathe
matics (Davis and Hersh, 1980), (Wylie, 1964).
In this paper we pres ent a genealization of the
Law of Sines to the tetrahedron and to analo
gous ob jectsin four and more dimen sions. The
tri an gle can be seen as a particularization of a
tetrahedron that has zero height. It can also be
seen as the con vex hull of 4 points in three di-
mensional space when two of the points are
made to co in cide and the body flat tens into a
two dimensional plane figure. In such a case
the generalized Law of Sines for the tetrahe
dron reduces to the Law of Sines for the

triangle. In order to generalize the Law of Sines
we use the vec tor prod uct ofn—1 vec tors in n-
dimensional space (Murray-LAsso, 2004). It is
to be noted that the extension presented in
this paper to the Law of Sines is an equation
relating areas of the faces for the case of the
tetrahedron and hyperareas of the objects in
the skin of the sim plex in the case of higher di-
men sions. Altough many ex ten sions of the Law
of Sines exist by applying the familiar Law of
Sines to two-dimensional triangles that are
formed or can be constructed in the tetrahe
dron and higher dimensional simplices, these
are not treated in this paper.

The Proof of the Law of Sines for
the Triangle

In order to be able to generalize the Law of
Sines to geometric ob jects whose di men sions
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exceeds two, it is necessary to carefully
choose the proof of the original theorem and
to view it in a mathematical environment as
free as we can without destroying the final

result.
The typical proof of the Law of Sines goes

as follows (Ayres, 1954); (Gutiérrez-Ducons,
1985):
Con sider the trian gles shown infigure 1a and b.

Figure1b

The three vertices of the triangles are la-
belled A, Band C and we will use the same let
ters to denote the corresponding interior an-
gles. The sides opposite to the verices are la-
belled with cor re spond ing lower case let ters a,
band c. Fig ure larep re sents the case in which
the triangle is acuteangular while figure 1b
represents the case of an obtuseangular
triangle. From ver tex C we draw a line per pen
dic u lar to line c —to its ex ten sion in case b)
— so thatwe can cal cu late the length of line h
in two man ners:

h=bsnA=asnB (1)

the last mem ber for case b) be comes asin (180
— B), recalling that B is the angle at vertex B

interior to the original triangle, but since sin
(180 — B) = sin B, in both cases we obtain the
same expression. From the second and third
mem ber of equation (1) we ob tain

b a
— = 2
sinB SInA

We now repeat the process changing the
roles of the sides of the trian gle, and from ver-
tex B we draw a perpendicular to line b and
reason in a similar fashion to obtain the
expression

c a

sinC sin A

which togeteher with equation (2) can be
written

b a _ ¢
sinB sinA sinC

(3)

which is the Law of Sines.

For the purpose of generalizing the Law of
Sines to more dimensions it is convenient to
consider the triangle as the geometric object
associated with the vec torsum a + b + ¢ of
three vec tors (ar rows) in a space with 2 or more
dimensions using the triangle law or poly gon law
and its corresponding algebraic expressions
for vec tor ad di tion, that is, in the case of geo-
metricalinterpretation the tail of a vector co-
in cides with the arrow of the pre vi ous vec torin
the sum as shown in figure 2. (In figure 2 we
have drawn things as though A, B and C are in
the same plane, which must be the case if the
space is two-dimensional. See figure 5 for the
case where they are not).
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Closed suacesson of vectarsin three

di mensiona space

Orthogond
projection on
aplane ofthe
vectorsin

Figure 3

Since in the case of a triangle, the polygon
is closed, the final sum will be the zero vector.
Now, when we have a figure constructed from
arrows suc ceed ing each other and fi nally clos-
ing on itself, not only is the vector sum the
zero vec tor, but also the vec tor sum of the or-
thogonal projections of these vectors upon
any subspace of lower di men sion. Fig ure 3il-
lus trates the idea. In the proof of the Sine Law
the space for projectingisaline orthogo nalto
one of the sides, say the hor i zon tal side. In this
case the horizontal line has zero orthogonal
projection upon the line orthogonal to it and
only two sides have a non zero projection.
Since the two projections must add to zero,
the magnitudes of the proyections must be
equal.

The projectionsofvectors aand b upon a
line or thogo nal to ¢ do not have to be thought

of as passing through point C, the important
point is that they have the same magnitude;

theirvaluesare h=] b | sinA=] a | sinB, (the
anglesmarked A and B are equal to the in te-
rior angles at the vertices A and B because
theyare al ter nate inte rior an gles be tween par-
al lel lines) from which the Law of Sines fol lows
by re peating the argu mentfor lines or thogo nal
to eitherside b orside a. Itisthisinterpreta
tion that will allow us to see a gen er al iza tion of
the Law of Sines to higher dimensional
objects.

The Law of Sines for the
Tetrahedron

To generalize the Law of Sines to the tetrahe-
dron we rep re sent each of its faces with a vec-
tor whose magnitude is the absolute value of
the area of the face and whose direction is
ortogonal to the plane of the face (Spiegel,

1998). To de cide on the di rec tion of the vec tor
we orient the faces by defining a sense in
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which the rim of the face is traversed (this can
be done byorderingtheverticesinaparticular
way) and associatingthearrowsofthevectors
with the “right hand screw rule,” which says
that the arrow points in the direction in which
a right hand screw would advance when it is
turned in the sense in which the rim of the sur-

face is tra versed (Spiegel, 1998). This is shown
infigure 4

Figure 4

Infigure4weareobservingatetrahedronas
seen fromabove. The ori en ta tions of the faces
are so chosenthatall arrows enter the tetra he-
dron. The arrow cor re spond ing to the horizon
tal plane is drawn as a circle with a dot in the
middle to represent an arrow pointing directly
to wards the ob server. The dot ted di rected cir
cle is the direction of tra versal of the horizorn
tal face. The vec tor sum of the four ar rows rep-
resenting the faces in three dimensionalspace
have a zero sum, therefore, when arranged in
space ac cord ing to the poly gon law, they form
a four-edge three-dimensional polygon that
closes upon itself (Spiegel, 1998). As men-
tioned above, the projection of this closed
arrow poly gon upon any subspace must be the
zero vec tor in the said subspace. To look for a
sine law we choose a subspace for projecting
consisting of a line such that only two of the
vec tors rep re senting the faces of the tetra he-
dron have non zero projections upon the line.

Since we are in a three dimensional space, if
we form the vector product of two of the vec-
torsrepre senting the faces of the tetrahedron,
the re sulting vec tor will be or thogo nal to both

vector factors and both will have zero projec-
tions along the line. The pro jec tions on the line

of the other two face-representing vectors
(which can be ob tained through a dot prod uct)
must be equal in mag ni tude. Let us choose the
face-representing vectors a and b as the vec-
tors that will have zero projections, then

equating the magnitudes of the projections of
the other two vectors we obtain the following

expression

la” bx|=]a” b>d|* (4)
where we have cancelledafactor|a” b | di-
viding both members of equation (4). By
choosing other pairs of vectors for the cross
prod uctandre peating the ar gu mentwe ob tain

(the meaning of the asterisk”s is explained
below)

|a” ¢ =]a” c>d|* (5)
la” dxt|=a" ds (6)

¢’ bxa=c” b>d*

b cxd =[o” ¢ ®)

and several others. The equations are not all

inde pend entdue tothe propertiesofthe triple
product. Using the brackett notation (Hsu,

1986) equa tions (7) and (8) can be writ ten

lc,b,a =|c, b, d|
Ib,c,d =|b,c,
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Taking into account that a cyclic permutation
of the letters in the bracketts does not change
its value and that an ordinary permutation
changes the sign (Hsu, 1986) the last equation
can bewritten

-[c,b,d] =-][c, b, q]

Cancelling both negative signs in this last
equationre veals that equation (8)isre ally the
same equation as (7). Only the equations
marked withanas terisk are inde pend entinthe
set of equa tions (4) to (8). The three equa tions
with asterisk (or other equivalent ones) are a
vec tor form of the Law of Sines for the tetra he-
dron. Notice that it is an equation relating
areas of faces, not lengths of lines.

Geometric Interpretations

Equation (4) can be given the following
interpretation:

The cross producta ” b produces a vector
that is orthogonal to both a and b. Being or-
thogonal to vector a implies it lies on a plane
paral lelto (thatiswith the same orientation)as
face A of the tetrahe dron. Being or thogo nal to
vectorb im plies it lies in a plane with the same
orientation as face B of the tetrahedron. Im-
posing both conditions simultaneously means
itliesinaline whose orientation is the same as
the intersection of faces A and B, that is, the
edge that joins faces A and B. The vector can
be normalized to unit length by dividing it by
the scalar | a”~ b | (although that will not be
nec essary be cause this fac tor can be can celled
with the same factor appearing on the right
member.) The dot product (of the normalized
vector) with vector ¢ gives sim ply the pro jec-
tion of ¢ upon the edge men tioned. This takes
care of the left side of equation (4). Similarily

the right hand side represents the projection
of the vector d upon the same edge (as suming
we still have not taken out the nor malizing fac-
tor | a” b |). After cancellingthenormalizing
factor on both sides of equation (4) what we
have is the magnitudes of both projections
multipliedbythefactor| a” b |. Theinterpre-
ta tion can be ap plied to to other pairs of vec-
tors representing the areas of the faces of the
tetrahedrons. We note that to obtain any of
the formulaswe choose the vectorsasso ciated
with a a pair of faces; their cross prod uct de-
termines a vector in the direction of the edge
be tween the faces. The mag ni tudes of the dot
products of the two vectors associated with
the re main ing two faces are then equal to each
other.

Since the algebraic sum of the projections
of the four vectors representing the faces of a
tetrahedron upon any di rected line is zero and
when the line chosen is orthogonal to two of
them, say aand b, then the sum of the pro jec-
tions of vectorscand d gives the zero vec tor.
This means that the fol low ing equa tion holds

(a” b)y{c+d)=0 9)

in other words, the cross prod uct of any two of
the vectors representing two faces are or-
thogonal to the sum of the vectorsrepresent
ing the two re main ing faces.

Asecondinter pretation can begiveninterms
of vol umes, since a triple prod uct can be as so ci
ated with the volume of a parallelepiped whose
sides meeting at a vertex are the vectors in the
tri ple prod uct. The Law of Sines can then be in-
ter preted as the equal ity be tween the vol umes of
the parallelepipeds defined by vectors a, b, ¢
and a, b, d.Severaladditionalequalitiesbetween
vol umes can be ob tained by permutting the vec-
tors. Re call that the vec tors a, b, ¢, d are vec tors

206 Ingenieria Investigacion y Tecnologia, ISSN en tramite


http://dx.doi.org/10.22201/fi.25940732e.2004.05n3.013

DOT: http://dx.doi.org/10.22201/fi.25940732e.2004.05n3.013

M.A. Murray-Lasso

orthogonal to the faces of the tetrahedron of
mayg ni tudes equal to their areas.

The reader may won der whether we can ob-
tain for the tetrahedronexpressionssimilarto
the equations ap pearinginthe Law of Sines for
trian gles. We cer tainly can, since for any closed
four sided polygon of three-dimensional vec-
tors closing upon themselves (that is, such
that the sum of the vec torsis the zero vec tor)
the algebraic sum of the projections of the
vec torswithre specttoadirected line or thogo-
nal to two of them (which for non zero vectors
can always be obtained through the cross
product) is zero, we have a situation such as
that de picted infigure 5.

The projectionsof aand b uponz are given
by

Proja=a.z/|z|=nla]cosg=n]a]sinb
Propb=Db.z/]z]=n]b]cosj =n|b]sina
Where nisaunitvectorinthedirectionofz.

Since both projectionsare equalin magnitude
we have

I[bl]lsina]l= Ja]]sinb]|

from which a part of the Law of Sines is ob-
tained in the form

q _ |

sina| i b

with the geometric interpretation that the an-
gles are between vectors representing two
faces of the tetrahedron and perpendicular
lines in the same plane as a line which is si mul-
taneously orthogonal to the two other faces
and the vector such as a representing a face.
By applying the same argument to additional
pairs of vectors representing faces we can de-
duce a series of ex pres sions of the form

a_ _ b ¢ _ d e _ f
sina| [inb|'sing sind sing fkink| "

where the letters a, b, ¢, d, e, f represent magni-
tudes of vec tors and the an gles have simi lar geo-
metric interpretations. It is necessary to intro-
duce different angles for different pairs of faces

Thethreevectorsa, b, z,

meet inacommon pdnt O

Vectorsa andb arein three
dimens ond space, not
necessarily in the same plane but
have [ oj ections ypon third vector
z of samemagnituwle and
oppodtesigrs.

0
3 k-
These twosegments are v

geneadly not cdlinear

oo >
_|90 k\ [
4 A \l

These two triangles are generaly in diff erent

danesbut aandj and b and q ae
conplementary angdes

Third vedtor zi nthe direction of
¢ d, and theref ore orthogonal to ¢
andd (cand darenot shown)

Figure 5
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be cause their cross prod uctde terminesdifferent
vectors play ing the role of z infigure 5.

Numerical lllustrative Example

Considera tetrahe dronsuch as the one shown
in figure 6, in which the coordinates with re-
spect to Car te sian axes x, y, z are given for the
verticesA,B,C,D.

In figure 6 the vertices of the tetrahedron
are labelled A, B, C, D and close to them are
trios of num ber in paren the ses with their co or
dinates. The vectors representing the faces of
thetetrahedronarelabelled a, b, ¢, d while the
faces themselves are labelled A’, B’, C’, D’.
Each of the edges has been given a sense. The
sense of traversal of each of the faces is such
that the vectors representing them are all di-
rected leaving the tetrahedron. The vectors
representing the edges are as fol lows:

EdgeDC: (0.5,1,0)—(0, 0, 0) = (0.5, 1, 0)
Edge DB: (1, 0, 0) — (0,0, 0) = (1, 0, 0)
Edge AB: (1, 0, 0) — (0.2, 0,1) = (0.8, 0, -1)
EdgeAC: (0.5,1,0)—(0.2,0,1) = (0.3, 1, -1)
Edge DA: (0.2,0, 1) —(0, 0, 0) = (0.2, 0, 1)

(0.2,01)

A > N

Cw.

The vectorrepresentationv of aface by a
vector normal to it and whose magnitude is
given by the area of the face, in the case of tri-
an gles is given by

v="%(v; " V)

where v; and v, are two adjacent edges of the
triangles and, given a sense of traversal of the
rim of the triangle, the order of the factors in
the product is chosen so that when the first
vector is rotated through an angle less than
180 de grees, so as to make itco in cide indirec
tion and sense with the second vector, the
turn ing is in the sense of tra versal of the rim of
the arearep re sented. Using these con cepts we
find:

a=%(BC  DC)= (0,0,—0.5)
b=%(DA" DC) = (-0.5, 0.25, 0.1)
¢ =% (DB’ DA)= (0,-0.5,0)
d=%(AB" AC) = (0.5, 0.25, 0.4)

No tice that the sum of the four vec tors rep-
resenting the faces is the zero vector.

We now pro ceed to check whether equa tion
(4)issatisfied.

Figure 6
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a’ b= (0.125, 0.25, 0)
a’" b.c=-0.125 a’ b.d= 0.125

Since the two magnitudes are equal, equa-
tion (4) is satisfied. The orthognality property
can be checked in a second way. The vector
DChbe tweenfacesaand b is

(0.5, 1, 0)

This vector must be orthogonal to the sum
c+d.

¢ +d=(0,-0.5,0)+ (0.5 0.25, 0.4) =
(0.5, — 0.25, 0.4)

The orthogonality between the two vectors
can be checked via the dot prod uct

(0.5,1,0).(0.5,-0.25,0.4) =
0.25-0.25=0

Since the dot product is zero, the two vec-
tors are orthogonal. In a similar fashion we
obtain

|lc” b.a] =]c  b.d]= 0125

there fore equation(7)issatisfied. By choosing
dif fer ent pairs of vec tors the Law can be tested
for the other cases. We leave the verifications
to the reader.

Extension to More Dimensions

The extension of the Law of Sines to
simplices of more dimensions is straightfor
ward. A simplex in four dimensions, for in-
stance, isageo metric ob ject that has a three di
mensional skin consisting of 5 three-dimen-
sional tetrahedrons (which is the number of

possible combinations of 5 points taken 4 at a
time), in analogy to a tetrahedron in three di-
men sions that has a two-dimensional skin con-
sisting of 4 ( number of combinations of 4
points taken 3 at a time) two-dimensional tri an-
gles. Each one of the tetrahedrons of the
four-dimensional simplex is a piece of a
3-dimensional hyperplane and can be repre-
sented in four-dimensional space through a
four-dimensional vector whose direction is or-
thogonal to the hyperplane and whose magnk
tude is equal to the vol ume of the cor re spond-
ing tetrahedron. Now in a four-dimensional
space we can find a vector which is simulta
neously orthogonal to three four-dimensional
vectors (a generalization to one more dimen-
sion of the fact that in a two dimensionalspace
we can find avec tor or thogo nal to onevec tor; in
a three dimensional space we can find a vector
that is simultaneously orthogonal to two vec-
tors.) One way to find them is solving a set of
homogeneous linear equations with a zero de-
terminant. A second way is through the cross
prod uct of three vec tors in 4-dimensions. A con-
venient definition for this product in terms of
the cartesian components of the four-dimen-
sionalvectors a, b, and cis

& & & g
b b b
a’b c=" % b,
c, ¢, C ¢
i ) ko

where i, j, k, lareunitvectorsinthedirection
of an orthogonal right-handed system of
axes. The re sult of the cross prod uct of the
three vectors is a four dimensional vector,
that it is orthogonal to all three vectors can
be easily seen by per forming the dot prod uct
with each one of them in succession. The
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mixed product (a” b” ¢).d isascalarthat
can be writ ten

(ipl+jp2+kp3+Ip4).(id1+jd2+k
d +1d) = pydy+ p,d, + psdy + pyud,

where p,, p,, s, P, are the components of the
product a” b” ¢ andd, d, ¢, d, are the
com po nents of d. This last sca lar can be writ-
ten as the following determinant

a, a, a, a,
b, b, b, b,
c, ¢ C ¢
d, d, d, d,

If d isequal toany of a, b, ¢ thedetermr
nant will have two iden ti cal rows, and there fore

accordingtoawellknown the o rem of de ter mi
nants (Thomas, 1960) the value of the de ter m¢
nant will be zero, establishing the ortho-
gonality of the three-vector cross prod uct with
each of its fac tors.

Once we know how to find a vector or-
thogonal to three vectors in four dimensional
space, given the five four-dimensional vectors
representing the tet ra he dra that forms the skin
of the four-dimensional simplex, vectors that
when we properly orient the tetrahedra add to
the zero vec tor, we find a vec tor or thogo nal to
three of them and with it and the two remain-
ing vectors representing two of the tetrahedra
we form two triangles in four dimensions for
which figure 5 applies and hence we can ex-
tend the Law of Sines to this case. The ex pres-
sion of the Law can be written

(a"b"c¢c).(d+e)=0

where a, b, ¢, d, e are four-dimensional vec-
tors representing the tetrahedra of the skin of

the four-dimensional sim plex. Many sim i lar ex
pressions can be obtained by interchanging
the vec tors.

Generalizing to n dimensions, for a simplex
in n di men sions whose skinis formed by n+ 1
simplices of n—1 dimensionsrep re sented by
n + 1 vectors orthogonal to their hyperpla-
nes, the expressions associated with the Law
of Sines take the form

s s

(v v, ... v ). (v, +v,,)=0

where v, v,, ..., Vv,,, are the vectorrepresen
tations of the (n — 1)-dimensional simplices
con form ing the skin of the n-dimensional sim-
plex. Additional expressions may be obtained
by per muting the in di ces of the vec tors.

The last equation is also valid for a
two-dimensional sim plex, thatis for atrian gle,
if the vector product is properly interpreted.
The vectorexpressionforthetrianglereads

a .(b+c)=0

In this case the vec tor prod uct has only one
factor and its calculation can be done using
thedeterminantalexpression

Y= +ia

which is orthogonal to the vector ia, + ja,
which plays the role of the horizontal side of
the triangle in the original proof of the Sine
Law. Itis for rea sons such as this that it is more
conve nientto con sider the vec tor prod uctin n
dimensionsasafunctionof n—1 ordered vari-
ables thanasabinary op erationand there fore
thenotation” (a; b; ¢) is to be pre ferred to a
“b’c.

The sides of the tri an gle rep re sented by or-
thogo nal vec tors is shownin figure 7.
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Figure 7

In figure 7 the original triangle is shown in
heavy lines, its sides are labelled with upper
case letters. The vec tors or thogo nal to the sides
of the original triangle, rotated positively
through 90 and of magnitudes equal to the
lengths of the orig i nal sides are la belled with the
corresponding lower case let ters. The two tri an
gles are congruent, one is simply a rotation of
the other, hence A=4a,B =D, C =¢ and the
angles la belled with the same let ters are equal.
Noticealsothatbothtrianglesaretraversedina
clockwise direction when the traversal coin-
cides with the senses of the arrows. Since the
arrows add to the zero vector the conditions
stated for the proof of the Law of Sines hold.
The horizontal side of the trian gle in thin lines a
is chosen as the side that will have a zero pro-
jection upon a vertical line (orthogonal to the
horizontal side a). The pro jec tions of the sides b
and c upon the ver ti cal line h are

bcos gq=bsing = ccosj = csinb
from which

c _b _C_B
sing sinb sing sinb

and the rest of the proof fol lows by now tak ing
a second side as the one having zero projec-
tion upon aline or thogo nal to the side.

Conclusions

We have ex tended the fa mil iar Law of Sines of
the triangle to the tetrahedron and to
simplices of four and more dimensions. The
law re lates the areas and hyperareas of the el e-
ments of the skin of the body. Hence for the
tetrahedron it relates areas of triangular faces,
for the 4-dimensional simplex it relates vol-
umes of tet ra he draform ing the skin of the sim-
plex, etc. To do it con ve niently we es tab lished
a vector expression that is equivalent to the
Law of Sines. The proof was accomplished by
taking a slightly different view of the ingredk
ents in the stan dard proof of the Law of Sines
forthe triangle. The vec tor prod uct of n-1 vec-
tors in n-dimensional space came in very
handy for obtaining a vector that is simulta
neously orthogonal to all the vector factors
which is an essential part of the proof of the
Law of Sines.
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