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Abstract

Gen eral for mu la tions are pre sented in this pa per to de ter mine the best po si tion and ori -

en ta tion of a de sired path to be fol lowed by a re dun dant ma nip u la tor. Two classes of

prob lem are con sid ered. In the first, a sin gle ma nip u la tor’s in dex of ki ne matic per for -

mance as so ci ated to one path point must be im proved as much as pos si ble. In the sec -

ond case dis tinct in di ces of ki ne matic per for mance, cor re spond ing to dif fer ent points of

the path, are to be op ti mized. Con straints are taken into ac count in or der to guar an tee

the ac ces si bil ity to the whole de sired task. Sev eral case stud ies are pre sented to il lus -

trate the ef fec tive ness of the method for pla nar and spa tial ma nip u la tors.

Key words: Op ti mi za tion, re dun dant ma nip u la tors, path place ment, mo tion plan ning,

ki ne matic per for mances.

Resumen

En este artículo se presentan formulaciones gener ales para determinar la mejor posición

y orientación de una ruta que se desea que recorra el órgano terminal de un ma-

nipulador redundante. Se consideran dos clases de problemas. En el primer caso un

índice de desempeño cinemático, asociado a un solo punto de la trayectoria, debe

mejorarse tanto como sea posible. En el segundo caso se optimizan distintos índices de

desempeño cinemático, correspondientes a diferentes puntos de la ruta deseada. Se

consideran  restricciones  para garantizar la accesibilidad a toda la ruta deseada. Para

ilustrar la efectividad del método se presentan varios casos de estudio de  mani-

puladores planares y espaciales.

Descriptores: Optimización, manipuladores redundantes, colocación de trayectorias,

planificación de movimientos, desempeño cinemático. 

I. Intro duc tion

A ro bot ma nip u la tor is ki ne mat i cally re dun dant if it
has more de gree-of-freedom (dof) than the mini-
mum re quired for the ac com plish ment of its tasks.

The re dun dancy in creases the abil ity of the ro bot to 
avoid col li sions as well as sin gu lar or de gen er ated
con fig u ra tions when a task is car ried out. How ever, 
this class of ma nip u la tors re quires more com plex
schemes for mo tion plan ning com pared with non
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re dun dant ma nip u la tors. In deed, a re dun dant ma -
nip u la tor should move in such a way that the
end-effector achieves a de sired main task and the
rest of the arm si mul ta neously ac com plishes a sec -
ond ary task. The sec ond ary task may be de fined as 
in ter nal mo tions to op ti mize ma nip u la tor’s per for -
mances, or to avoid col li sions. The ki ne matic per -
for mances can be mea sured in terms of cri te ria
cho sen by the user, like the manipulability (Yoshi-
kawa , 1985) or the con di tion num ber (An geles et
al., 1992) of the Jacobian ma trix, which are in ter -
est ing in cer tain ap pli ca tions.

The redundancy of manipulators has been
solved in the literature by optimizing locally 
(Yoshikawa et al., 1989), (Chiu, 1988) or globally
(Nenchev, 1996), (Nakamura et al., 1987),
(Pamanes et al., 1999) the kinematic or dynamic
performances. In such works it is assumed that the 
path placement is specified with respect to the
robot’s frame. Therefore, the performances of the
manipulator obtained by applying these methods
are relative to the assumed path location. Never-
theless, in some applications, the user could find a
suitable path location to improve as much as
possible the robot’s performances. An automatic
turning table or a collaborative manipulator can be
used as positioner devices in the robotic work-
station to judiciously place the task to the main
robot.

The subject of the optimal relative robot/path
placement has been studied in the literature mainly 
for non-redundant manipulators (Zhou et al.,
1997), (Nelson et al., 1987), (Fardanesh et al.,
1988), (Pamanes, 1989), (Pamanes et al., 1991), 
(Reynier et al., 1992), (Abdel-Malek, 2000). To
the author’s knowledge, only J.S. Hemmerle and
F.B. Prinz (Hemerle et al., 1991) considered the
problem of the optimal path placement for redun-
dant manipulators; in this study, it is assumed that
the task is held by a collaborative manipulator (left
hand) moving simultaneously with the main mani-
pulator (right hand) which drives the tool. Two
criteria of optimization were simultaneously consi-
dered: the joint variables were moved away from

their limit values as much as possible and the joint
displacements were minimized. In that method,
however, constraints were not taken into account
to assure continuous joint trajectories. On the
other hand, the case was not studied in which the
task doesn’t move simultaneously with the main
manipulator; besides, the optimization of kinematic 
performances on specific zones of the path was
neither investigated. The resolution of both pro-
blems becomes interesting in industrial applica-
tions.

Two cases of optimal path placement are stu-
died in this paper for redundant manipulators. In
the former (single-objective problem) we formulate
a process to compute the path placement which
allows to optimize one index of kinematic per-
formance of the manipulator on only one point of
the desired path. In the second case (multi-
objective problem) we compute the path place-
ment such that distinct indices of kinematic perfor- 
mance are optimized on different zones of the
path. Constraints are taken into account in order
to avoid both exceed the joint limits and discon-
tinuous joint trajectories.

In the next section some concepts of robot
kinematics are evoked which are later applied in
our formulations. A solution is presented in the
third section for the single-objective problem and
then, in the fourth part of the paper, the multi-
objective problem is studied. The generalization of
our formulations to solve the case of global op-
timization is observed in the fifth section. Some
case studies are discussed to illustrate the effec-
tiveness of the methods for both planar and spatial
manipulators. The concluding remarks are finally
presented.

II. Prelim i naries

The kinematic function of a robot manipulator is
defined as:

x f(q)= (1)
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where x is  the  m-dimensional vector of opera-
tional coordinates describing the situation of the
end-effector in the Cartesian space; q is the n-di-
mensional vector of joint variables defining the ins-
tantaneous configuration of the manipulator; f is
an m-dimensional function (n ³ m).

The inverse kinematic function of a manipulator, 
if it exists, is given by

q f (x)-1= (2)

The direct velocity function of a robot mani-
pulator is obtained by differentiation of equation 1:

& &x J(q)q= (3)

where the dot denotes differentiation with respect
to time and J (q) Î ´R m n  is the Jacobian matrix of
the manipulator. When the number n of joint va-
riables  qi  of a manipulator is equal to the number 
m of operational coordinates  xj  of the end effector,
then the manipulator is called  non redundant.  On
the other hand, when  n > m  the manipulator is
termed redundant. In this case the inverse kine-
matic function of equation (2) has an infinite num-
ber of solutions.

The inverse velocity function of a manipulator is
obtained from equation 3 as

& ( ) &q J q x= -1 (4)

If  J(q) is singular or  n > m  then the inverse
J-1(q) does not exists and the linear system of
equation (3) cannot be solved by using equation
(4). In such a case the inverse velocity function
may be expressed as

& & ( )q J x I J J= + -+ + z (5)

where

J +  is the pseudo-inverse of J (in order to simplify
the terms in this paper J(q) will be equiv a lent to
J).

z is an arbi trary vector Î R n.

I is the iden tity matrix of dimen sion n´n.

In equation (5), J + &x is the least-norm solution
of equation (3), i.e., it provides a vector  with mini-
mum Euclidean norm satisfying this Equation.  On
the other hand, (I–J+ J) z  represents the projection 
of z on the null-space of J; this part is called the
homogeneous solution of equation (3); it is referred
to as the self-motion of the manipulator and does
not cause any  end-effector motion. In order to  use  
the self-motion to improve configurations, the vec-
tor z is chosen as  

z q= Ñk h( ) (6)

where

Ñh( )q  is the  gradient of an index of perfor mance
h(q) to be opti mized.

k is a scaling factor of Ñh( )q .  It is taken to be posi -
tive if h(q) must be maxi mized and nega tive if 
h(q) is to be mini mized.

Several criteria of kinematic performances for
manipulators have been proposed in the literature,
which can be considered for the index h(q) in
equation (6). Each of such indices evaluates diffe-
rent kinematic features of a manipulator, which
may be interesting depending on the nature of the
task to be carried out. A succinct survey of two
indices of performance is presented below. Such
indices, the manipulability and the condition num-
ber of the jacobian matrix, will be applied as criteria 
of optimization to solve the path placement pro-
blems in section VI.

The manipulability index, introduced by Yoshikawa
(1985), is defined as

w T= det( )JJ (7)
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The manipulability is a measure of the ability to
arbitrarily change the position or orientation of the
end effector. 

Thus, its maximization would be appreciated in
task zones where relatively large deviations in the
prescribed motion of the end-effector are likely.

The condition number of the Jacobian matrix is
another interesting index applied to evaluate the
performances of robotic manipulators (Angeles et
al., 1992). Such index can be computed as:

C( ) max

min

J =
m

m
(8)

where m max is the largest singular value of J and 
mmin is the smallest singular value of J. 

The minimum condition number of a manipu-
lator minimizes the error propagation from input
joint velocities to output end-effector velocities.
Thus, it can be used as a local measure of accu-
racy of the manipulator’s motions. 

III. Optimal path placement for
single-objective optimization

A. State ment of the problem

The task of a  n-dof manipulator is specified by a
set of nt m-dimensional vectors of operational coor-
dinates of the end-effector in an orthonormal fra-
me  åt.  The manipulator considered is assumed as 
being redundant (n>m). The nt  vectors correspond 
to a sample of points pi (i = 1, 2, …, nt ) of the
desired path in the task space. The operational coor-
dinates are the desired positions and orientations
of the frame  ån+1  attached  to  the  end-effector,
as showed in figure 1. 

A suitable index of performance is then
assigned by the user to one arbitrary path point,
say  pk , k Î {1,..., nt}, which must be maximized
by the corresponding manipulator’s configuration
when the task will be accomplished. A law of
motion is also given which refers to the time the
position of the end effector on the path.
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Figure 1. Desired path referred to the frame tå and its place ment in the frame 0å fixed to the robot
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On the other hand, the path placement is specified
by variables regarding the position and orientation of 
the frame åt with respect to the frame å0 fixed to
the base of the robot. They are the components of
the  placement vector defined as

[ ]0 e r r rtx ty tz

T
= , , , , ,a b g (9)

where rtx, rty, rtz, are the orthogonal components of
the vector of position  ort  (Figure 1), and a, b, g  are 
the Euler angles Z-Y-X  defining the orientation of 
åt  with respect to the frame å0 . 

It is desired to obtain the components of the
placement vector  0e  of the path, so that the index
of manipulator’s kinematic performance associa-
ted to the sample point  pk is optimized when the
task is accomplished. 

B. Process of solu tion

The single-objective problem is equivalent to a cons-
trained non-linear programming problem. The ob-
jective function is defined as the index of per-
formance hk(qk) assigned to the path point pk. The
number of independent variables will be generally
6+n:  the 6 components of  the placement vector
0e of the path and, because of the manipulator’s
redundancy, the n joint variables of the configu-
ration qk which allow to satisfy the desired situa-
tion of the end-effector at the path point pk. 

To solve the problem, we propose an optimi-
zation process in three phases: phase I in which
the optimal placement vector must be found;
phase II addressed to compute the optimal confi-
guration on the path point pk for each proposed
placement to be evaluated; and phase III commi-
tted to complete the manipulator’s joint trajectories 
for the whole desired path by using the optimal
path placement obtained in phase I. Notice that
phase II allows to evaluate the objective function of 
phase I. Such a function in phase I can be defined as

f hk k= ( )q (10)

The general procedure to solve the single-objective
problem is schematized in the flow chart of figure
2. Details on the three phases concerned are given
below.

Phase I

Before obtain the configurations at each path
point, the operational coordinates must be referred 
to frame Ó0. Therefore, when a new placement is
proposed in the optimization process, the opera-
tional coordinates have to be first updated in phase 
I by applying the following transformation:

0

i

0
t

t

i
T T T= (11)

In this equation:

t

i
T is the homo ge neous matrix estab lishing the

desired posi tion and orien ta tion of the end
effector on the path point pi  referred to frame  

tå .

0 Tt  is the homo ge neous matrix for the posi tion and 

orien ta tion of frame tå  referred to frame  0å .

0 T
i
 is the homo ge neous matrix defining the posi -

tion and orien ta tion of the end effector on the path
point  pi  with respect to frame 0å .

When the given operational coordinates have
been updated, then the objective function must be
evaluated in phase II for the current placement;
after the process returns to phase I in order to
check for the convergence of the method. If the
convergence is attained then the procedure goes
to phase III; otherwise, the placement must be
improved by applying a suitable strategy.

Phase II

After   updating   of   the   operational  coordinates  for
a  path  placement proposed in phase I, the  redun- 
dancy must be solved to find the configurations qi 
(i=1, 2, …. nt) for all the path points. To do that,
we assume as secondary task on point pi the

 Vol.IX No.3 -julio-septiembre- 2008 235

 J.A. Pamanes-García, E. Cuan-Durón. and S. Zeghloul

DOI: http://dx.doi.org/10.22201/fi.25940732e.2008.09n3.018

http://dx.doi.org/10.22201/fi.25940732e.2008.09n3.018


optimization of the same index of performance
considered on pk; i.e., for one path point the
manipulator has to achieve the corresponding ope- 
rational coordinates and also optimize hk(qi). To
find such configurations the following process is
carried out: 

1. Find a configuration qi at each path point
in such a way that Equation (1) is satisfied. This
configuration is obtained by minimization of the
following function:

epos i i
= -x x ' (12)

where xi is the vector defining the desired situation
of the end-effector at point  pi , and xi’ is a vector of 
operational coordinates corresponding to a confi-
guration qi’ proposed when minimizing of equation
(12). The symbol  ×   denotes the Euclidean norm.  
If the task is feasible then equation x i = x i’ will be
satisfied when the norm of equation (12) is mini-
mized. The numeric minimization is carried out by
applying a method of constrained non-linear opti-
mization. The independent variables are the joint
variables of qi’. The constraints to be considered
are presented in the next sub-section.
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Figure 2. Compu ta tional algo rithm for the single-criterion problem
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2. When a configuration qi at one path point
has been found, satisfying both equation (1) and 
all the constraints, then compute J, J + and, Ñh( )q
and optimize for such a configuration the index h(q)
by successively obtaining of the homogeneous
solution of equation (3). At each iteration of this
process, when a vector &q

i
 of the homogeneous so-

lution is obtained corresponding to a certain confi-
guration qi, an improved configuration qi* may be
computed by

q q q
i i i

t* &= + D (13)

where D is a sufficiently small time interval. Note
that, because &q

i
 is a homogeneous solution, the

improved configuration q
i

*  will also preserve equa-
tion (1). The initial configuration of the optimization 
process has been determined in step i.

3. For one path-point the optimization of a confi-
guration is stopped when Ñh( )q  becomes zero. 

Phase III

When computing the optimal path placement only
a significant sample of path points is considered in
order to reduce the time of computation engaged
in the optimization process. Nevertheless, the de-
sired trajectory is a continuous curve which must
be approximated by a sufficiently large number of
supplementary points of the path. So, to syn-
thesize continuous joint trajectories for the whole
task, when the optimal placement has been found
the redundancy must be solved for supplementary
path points. This process is the same used to solve
the redundancy in phase II by optimizing the de-
sired index of performance hk(q). The number of sup-
plementary points is proposed by the user in such a 
way that a conventional precision be satisfied. Con- 
tinuous joint trajectories will be obtained as a result 
of this process because the index to be optimized
is the same for all the considered points.

C. Constraints of the problem

The optimization processes to obtain the path pla-
cement and to solve the redundancy must be

constrained in order to obtain realistic solutions.
The following constraints are taken into account:

1. Explicit constraints in phase I

Explicit constraints are imposed in phase I on the
placement vector so that solutions are obtained
only into the available physical space for the task
placement. Such space may be imposed by a
positioner device. The following constraints on the
components of the placement vector are considered:

r r rt x l t x t x u( ) ( )
0 0 0£ £ (14a)

r r rt y l t y t y u( ) ( )
0 0 0£ £ (14b)

r r rt z l t z t z u( ) ( )
0 0 0£ £ (14c)

a a a( ) ( )l u£ £ (14d)

b b b( ) ( )l u£ £ (14e)

g g g( ) ( )l u£ £ (14f)

In expressions (14), the indexes l and u denote,
respectively, lower and upper bounds of the inde-
pendent variables.

2. Implicit constraints in phase I for access
to the task

Implicit constraints are also considered in order
to guarantee the efficacy of placements proposed
in the optimization process. To assure the accessi-
bility to all the sample points on the path the
following constraint is introduced:

t
i u tt i n£ = 1 2, ,..., (15)

where t i is the reach vector demanded to the
manipulator at point pi; the symbol ×   denotes
Euclidean norm. tu is the norm of the maximum
reach which the manipulator can provide. Such norm
depends on the geometric parameters of the ma-
nipulator.  
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3. Explicit constraints in phase II for joint
limits avoidance

An elemental condition for any feasible configu-
ration consists in preserving the joint variables into
the admissible domain of configurations. So, any
configuration used for the task should verify the
following conditions:

q q q i n j n
i

l

ij i

u
t

( ) ( ) ,..., ; ,...,£ £ = =1 1     (16)

where:

q
ij
 is the i-th joint vari able of the q j manipulator’s
config u ra tion corre sponding to the j-th task point.

q q
i

l

i

u( ) ( ) are the lower and upper limits, respecti-
vely, of the i-th joint vari able.

4. Implicit constraints in phase II to
guarantee continuous joint trajectories

Implicit constraints are imposed in phase II which
allow to assure the feasibility of the whole joint tra-
jectories.

To introduce the considered constraints we re-
call here de notion of the aspect of a manipulator.
One aspect is defined (Borrel et al., 1986) as a
continuous subset of the manipulator’s joint space
composed by configurations which render non-zero 
all the m-order minors of the jacobian matrix, except
those minors being zero everywhere in the joint
space. 

Thus, the aspects of a manipulator are subsets
of the joint space separated by hypersurfaces
whose equations are determined by the m-order
minors of the jacobian matrix equalized to zero.

On the other hand, it is known that for non-cus-
pidal manipulators (Burdick et al., 1995), (Wenger, 
1997), the continuity of joint trajectories corres-
ponding to a given task can be guaranteed if the
manipulator is constrained to use configurations
remaining in only one aspect of its joint space.

Consequently, to guarantee continuous joint tra-
jectories the following conditions must be imposed
to manipulator’s configurations which will be used
to accomplish a desired path:

e d
kj kj

( )q > 0 (17)

where

d
kj
( )q is the left hand func tion of the equa tion
defining the j-th hypersurface ( j = 1, 2,..., nhk )
which borders the aspect Ak  in the joint space;
k Î {1, 2, ... , n A}.  nhk is the number of such
hypersurfaces.  nA  is the number of the robot’s
aspects. Only one aspect will be chosen con-
taining all the config u ra tions which allow to achieve
the desired task.

e
kj
 is a constant (+1 or –1) depending on the
hypersurface and the consid ered aspect  Ak.

In section VI we will identify the implicit cons-
traints (17) for two manipulators.

VI. Optimal path placement for
multi-objec tive optimization

A. State ment of the problem

The task of a n-dof manipulator is specified by a set 
of nt m-dimensional vectors of operational coordi-
nates of the end-effector (n>m) in an orthonormal
frame tå .  Such operational coordinates give the
desired positions and orientations to be followed by 
a frame n+å 1  attached to the end-effector, as
showed in figure 1. In that figure a sample of
points pi (i = 1, 2, …, nt ) is illustrated corres-
ponding to the desired path in the task space.
Suitable indexes of performance are then assig-
ned by the user to several path points pi. Thus, we
want to compute the path placement vector 0e, so 
that all the indexes associated to the sample
points be optimized while the task is being accom- 
plished. A law of motion is also specified which
refers to the time and position of the end-effector
on the path.

Single and Multi-Objective Opti mi za tion of Path Place ment for Redun dant ...

 Vol.IX No.3 -julio-septiembre- 2008 238

DOI: http://dx.doi.org/10.22201/fi.25940732e.2008.09n3.018

http://dx.doi.org/10.22201/fi.25940732e.2008.09n3.018


B. Process of solu tion

The multi-objective problem is also a constrained
non-linear programming problem. The objective
function should consistently characterize a set of
dissimilar indexes of performance to be optimized.
Thus, it is required that the indexes be first nor-
malized to eliminate scaling and unity differences;
then they can be included in a coherent objective
function.

As in the single-objective problem, the inde-
pendent variables will be the 6 components of  the
path placement vector 0e and, because of the
manipulator’s redundancy, the joint variables of
configurations qi which allow to satisfy the desired
situation of the end-effector on the path points pi. 
To solve the multi-objective problem we propose an 
optimization process having also three phases.  In 
phase I the optimal placement will be searched;
phase II is addressed to compute the optimal
configurations at the nt path points for each pla-
cement to be evaluated; phase III is finally com-
mitted to synthesize the manipulator’s joint
trajectories for the whole desired path by using the
optimal path placement obtained in phase I. Note
that phase II allows to evaluate the objective
function of phase I. Such a function is defined
below. The procedure presented here to solve the
multiobjective problem is illustrated in the flow
chart of Figure 3. Details of the procedure are
discussed in the next paragraphs.

Phase I

The path placement must be searched in this
phase. For each placement proposed here we have 
to update the operational coordinates; then an
evaluation of the placement can be accomplished
in the process of optimization. 

The transformation of such coordinates is
carried out by applying equation (11); then the
redundancy will be solved in phase II, and the
objective function will be computed based on
normalized indexes of performance. After that the

process returns to Phase I in order to check for the
convergence of the method. If the convergence is
attained then the procedure goes to Phase III;
otherwise, the placement must be improved by
applying a suitable strategy. The objective function
for the multi-objective problem as well as the
normalized indexes, are defined below.

A normalized index of performance associated
to the sample point pi  is obtained as:  

c
h

h
i

i i

i

=
( )

*

q
       i ntÎ { , ,..., }1 2 (18)

The normalization factor h
i

*  in equation (18) is
the maximum value of the index of performance at
the point pi that can be obtained by the ma-
nipulator when only such index is optimized, and
the accessibility to all the path points is satisfied. In 
fact, the normalization factor h

i

*  is the optimal
value obtained for the index h

i i
( )q  in the sin-

gle-objective problem. Thus, to obtain the normali-
zation factors we have to solve as much single-
objective problems as sample-configurations are to 
be optimized. It must be observed that a sample-
point could hold or not an index of performance
associated to be optimized; thus, the number of
indexes to be optimized can be lower or equal than nt. 

The main idea to define the objective function is 
that the value of such function, corresponding to a
path location, must be equivalent to a typical value
of the set of normalized indices to be optimized.
Such typical value can be defined as:

c c c= - $s (19)

where c and $s c  are, respectively, the mean and the 
standard deviation of the set of normalized indexes
associated to the sample points. Hence, the value
of c obtained by equation (19) corresponds to a
typically small value of the set of normalized in-
dexes of the sample. 

If we assume that the all the indexes of per-
formance considered in the problem are to be

 Vol.IX No.3 -julio-septiembre- 2008 239

 J.A. Pamanes-García, E. Cuan-Durón. and S. Zeghloul

DOI: http://dx.doi.org/10.22201/fi.25940732e.2008.09n3.018

http://dx.doi.org/10.22201/fi.25940732e.2008.09n3.018


maximized, then the global maximization of the set
of nt indexes would be obtained by maximization of
c. Nevertheless, algorithms in usual software for
optimization are generally intended to minimize the
objective function. Thus, to solve the optimization

problem by minimization, the objective function
could be defined as  – c; therefore, such a function
can be finally written as:

f cc= -$s (20)

240 Ingeniería Investigación y Tecnología, ISSN 2594-0732

Single and Multi-Objective Opti mi za tion of Path Place ment for Redun dant ...

 

Phase II 

Phase I 

Propose a path placement  

Update  the sample of  
operational coordinates  by 
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Figure 3. Algo rithm for multi-criteria problem
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Phase II

The nt optimal configurations satisfying the desired
task and constraints, which are used to compute
the normalized indexes, must be found in phase II.
The algorithm to compute such configurations is
the same used in single-objective problem; this
one has been described in section III.

Phase III

The continuous joint trajectories for the whole task
must be finally synthesized in Phase III for the op-
timal path placement. To do that, the redundancy
has to be solved for supplementary path points in
such a way that the optimal configurations of
points pi obtained in phase II are preserved. 

In the multi-objective problem however, because
of generally different indexes of performance are
associated to adjacent sample path points, say pi

and  pi+1, we cannot use a single index to solve the
redundancy by using the homogeneous solution for 
intermediate path points. In fact, if the homo-
geneous solution is applied on intermediate points
to optimize the index associated to pi, then the
joint trajectories becomes discontinuous on pi+1

and vice versa.

To solve the redundancy and synthesize the
continuous joint trajectories connecting adjacent
sample path points, a judicious strategy must be
used. We propose a suitable secondary task to be
accomplished, which is specified in the joint space
as a continuous trajectory between configurations
asso- ciated to adjacent sample path points. This
secondary trajectory is such that the determinant of 
J J T  smoothly evolves from its value on point pi to
the value on point pi+1. Consequently, because all
the configurations so obtained belong to only one
aspect, the continuity of joint trajectories will be
assured. Thus, to accomplish both the main and
the secondary tasks, we propose to solve the re-
dundancy by minimizing the following objective
function at each intermediate point pj  between two 
successive sample points pi and  pi+1 : 

f e e j nj pos j J

*

det int* , , ,...,= + =
J

1 2           (21)

where nint  is the number of intermediate points to
be considered between two sample points. This
number is chosen by the user so that a con-
ventional precision be satisfied. The error of posi-
tion of the end-effector, epos j, in equation (21), is
defined like in equation (12)  for intermediate points.

On the other hand, we define J J J*
j j j

T= , where Jj

is the Jacobian matrix of the manipulator on the
intermediate point pj. Then the error of the
determinant of J*

j in equation (21) is defined as

{ }e abs
j

J J
det

* * '
* ( )

J
J J= -det det  (22)

where:

det J J
*  is the desired value of the deter mi nant of  J*

for the config u ra tion at point pj. Its value is
assigned by a cycloidal law [Equa tion (23)]
which is defined for the current segment of the
path between two succes sive sample points.
Such cycloidal law must smoothly change the
deter mi nant of J* from its value corre sponding
to the config u ra tion at point pi, to that one at 
pi+1 .

det ( ' )*J J  is the value of the deter mi nant of J* for 

the current config u ra tion in minimization of
equa tion 21. 

The desired behavior of the determinant of J* in
the segment between sample points pi  and  pi+1 is
described by the following cycloidal law: 

det detJ JJ i

* *= +
(23)

D
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The variables concerned in equation (23) are
defined as follows:

D(
'

* * *det det detJ J J
i i i

= -
+1
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t t t
pj pj pi
' = -

DT t t
i pi pi

= -
+1

where tpi, tpj are the values of the time elapsed
when the end-effector arrives at points pi (sample)
and pj  (intermediate), respectively.

C. Constraints of the problem

As considered for the single-objective problem, to
obtain realistic solutions in solving the multi-ob-
jective problem, explicit and implicit constraints
should also be taken into account. Such cons-
traints are identical to those considered in Section
III C.  They were examined in that section.

V. Path placement for global optimization

The path placement problem was studied in sec-
tion III for the optimization of manipulator’s per-
formance on a certain point of the path by taking
into account a single kinematic criterion. Never-
theless, in some tasks the optimization of such
criterion can be preferred not only on a particular
point but on every one of points in the path; i.e. a
global optimization of manipulator’s performances
is desired when the task is carried out. Note that
such problem can be considered as a particular
case of the multi-objective problem examined in
the previous section. In fact, in the formulation for
multi-objective optimization we can assign the sa-
me criterion of performance to all the sample
points in order to attain the global optimization.
However, it must be pointed out that the homo-
genization of the corresponding indices is not re-
quired in the process of solution; then equation
(18) takes the form c h

i i i
= ( )q . 

Furthermore, after optimizing the set of indexes
on the sample points, the continuous trajectories
of joint variables for the whole path can be syn-
thesized by applying only the Phase III of the pro-
cess for the single-objective problem. Conse-
quently, the minimization of function (21) is not ne-
cessary for global optimization.

VI. Case studies

Several case studies are presented in this section
in which single and multi-objective problems of
optimal path placement are solved; we consider
planar and spatial paths for each kind of problem.
The planar task must be accomplished by a 3R ma- 
nipulator, and the spatial task should be achieved
by a 4R manipulator. In the following sub-section,
the geometric parameters of both manipulators will 
be specified and the implicit constraints of the
problems to hold configurations in an aspect will be 
identified. Then, in succeeding subsections the pro-
blems will be solved.

A. Manip u la tors for the case studies

1. The 3R manipulator

The considered planar manipulator is shown in
Figure 4, and its geometric parameters are pre-
sented in table 1. These parameters are defined by 
using the modified Denavit-Hartenberg method
(Khalil et al., 1986). A frame 

4å  is attached at
the tip of the third link in order to use its origin to
specify the linear velocity of the end-effector. The
manipulator’s joint variables are è1, è2 and è3, and
its limit values are q

i

l( ) = - °150  and q
i

u( ) = °150 , 
for  i = 1, 2, 3 .
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Figure 4. 3R  Manip u lator to be applied for

planar tasks
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By considering the velocity vector of O4  referred
to the frame 0å  as & &, &x [ ]= x y T , the jacobian
matrix of the manipulator is:

J =
- + + - + -

+ +

( ) | ( ) |

( )

s s s d s s d s d

c c c
1 12 123 12 123 123

1 12 123 d c c d c d|( ) |12 123 123+

é

ë
ê

ù

û
ú

(24)

In this matrix and hereafter we use the following
compact notation:

c
ijk i j kº + +cos( )q q q s

ijk i j kº + +sin( )q q q

c
ij i j

º +cos( )q q s
ij i j

º +sin( )q q

c
i i

º cos( )q s
i i

º sin( )q

The 2-order minors of the jacobian matrix are
expressed as:

m d s s1
2

2 23= +( ) ( 25a)

m d s s2
2

3 23= +( ) (25b)

m d s3
2

3= (25c)

The conditions of configurations which render
zero the above minors provide the following equa-
tions of the surfaces dividing the joint space in
aspects: 

s s2 23 0+ = (26)

s s3 23 0+ = (27)

s3 0= (28)

Thus, six aspects can be identified (nA=6) for
the 3R manipulator, as showed in figure 5. We
chose the aspect A1 for the achievement of the
task; consequently for (17) we have k=1. Then we
observe that the aspect A1 is surrounded by the
surfaces specified by equations (26) and (28);
therefore we have nhk =2 and å11=1, å12=1 for
ine- quality (17). 

The implicit constraints on è2 and è3 to hold
configurations in the aspect A1 are then expressed
as

d11 0> (29)

and

d12 0> (30)

where d11 2 23= +s s  and d12 3= s .
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Table 1. Geometric param e ters of the 3R manip u lator

a d q r

1 0 0 q1 0

2 0 d q2 r2

3 0 d q3 r3

4 0 d 0 0

A6 

1) q

2

A2 

A5 

A3 

A1 

A4 

q3

  q1

  q2

Figure 5. Aspects of the 3R manip u lator
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2. The 4R manip u lator

The manipulator is shown in figure 6 and its geo-
metric parameters are presented in table 2. The
joint variables are è1, è2, è3 and è4, and its limits
values are q

i

l( ) = - °150  and q
i

u( ) = °150 , for i = 1,
2, 3, 4. To specify the linear velocity of the end
effector we use the point O5  of the frame 

5å
which is attached at the tip of the fourth link. 

By considering the velocity vector of O5  referred
to the frame 

0å as & [ & &, &]x ,= x y z T , the jacobian
matrix of the 4R manipulator is:

J =

- + +

+ +

é

ë

ê
ê
ê

- + +( )

( )

(c c c s d

c c c c d

s s2 23 234 1

2 23 234 1

2 23

0

s c d

s s s s d

c c c d

234 1

2 23 234 1

2 23 234

)

( )

( )

- + +

+ +

- +

- +

+

-

-

( )

)

( )

s s c d

s s s d

c c d

s c d

s
23 234 1

23 234 1

23 234

234 1

234 1

234

s d

c d

ù

û

ú
ú
ú

(31)

The 3-order minors of the jacobian matrix which
are non zero everywhere in the joint space are:

m d c c c s s1
3

2 23 234 3 34= - + + +( )( )          (32a)

m d c c c s s2
3

2 23 234 4 34= - + + +( )( )         (32b)

m d s c c c3
3

4 2 23 234= - + +( ) (32c)

The conditions of configurations which render
zero the above minors provide the following equa-
tions of the surfaces dividing the joint space in
aspects: 

c c c2 23 234 0+ + = (33)

s s3 34 0+ = (34)

s s4 34 0+ = (35)

s4 0= (36)

Thus, twelve aspects can be identified (nA=12) for
the 4R manipulator. We chose the aspect  A1  for
the achievement of the task; consequently, for
inequality (17) we have k=1. Then we observe that 
the aspect A1 is bounded by the surfaces of
equations (33), (34) and (36); therefore for
inequality (17) we have nhk =3 and å11=1, å12=1,
å13=1. Thus, the implicit constraints on configu-
rations to hold configurations in the aspect A1 are:

d11 0> (37)

d12 0> (38)

d13 0> (39)

where

d d11 2 23 234 12 3 34= + + = +c c c s s,

and 

d13 4= s

B. Single-objective prob lems

The tip of the 3R manipulator should complete a
parabolic path; whereas in the case of the 4R ma-
nipulator, the tool has to describe a helicoidal path. 
The tasks of both robots are to be accomplished by 
applying cycloidal laws of motion to the end-
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Figure 6. 4R  Manip u lator to be applied for three

dimen sional tasks
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effector during 5 seconds. The Cartesian coordi-
nates of the sample-points are referred to the
frame åt; they are given in tables 3 and 5. In the
two cases the path placements must be deter-
mined in such a way that the manipulability index is 
maximized on the point p3  (when t=2.5 s). The
independent variables of the planar problem are
rt

o
x, rt

o
y , and a (rotation about the axis z0 ); in the

case of the 3D path, the additional variable rt
o
z

must be included. The initial values for such va-
riables, as well as the obtained optimal values are
given in tables 4 and 6. In the same tables the
initial and a the optimal values of the objective
functions are presented. The joint trajectories
corresponding to the optimal placement are
observed in figures 7 and 10. The behaviors of the
normalized manipulability are compared in figures
8 and 11. Sequences of configurations of the
robots during the accomplishment of the tasks are
presented in figures 9 and 12 for the initial and the
optimal placements.
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Table 3. Coor di nates of the sample path points in tå

Points x (m) y (m)

p1 -0.2785 0.5028

p2 -0.1392 0.3856

p3 0.0000 0.3504

p4 0.1392 0.3970

p5 0.2547 0.4979

Table 4. Inde pendent vari ables and objetive func tion

rt x
0

(m)
rt y
0

(m)
a

(degrees)
Objetive
function

Lower Limit -1.0 -1.0 -90 -

Upper Limit 1.0 1.0 90 -

Initial Values 0 0 0 -0.1233

Optimal Values 0.0492 0.2405 -1.93 -0.1723

t (s) 

è
(D

eg
re

es
)

B1.  Para bolic path

Figure 7. History of joint vari ables for the optimal place ment. 3R manip u lator. Single criterion
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t (s) 

Optimal value 

Figure 8. Normal ized manipulability of the 3R manip u lator for the planar task

t=0 s t=2 s t=2.5 s t=5 s 

a) Initial placement:

t=0 s t=5 s t=2 s t=2.5 s 

b) Optimal placement:

Figure 9. Simu la tion of the task 
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t (s) 

  Figure 10.   History of joint vari ables for the optimal place ment. 4R manip u lator. Single crite rion.

  

t (s) 

Optimal value 

Figure 11. Normal ized manipulability of the 4R manip u lator during the task

Table 5. Coor di nates of the sample path points in tå

Points x (m) y (m) z (m)

p1 0.1500 0.4000 0.0000

p2 0.0464 0.5427 0.0307

p3 -0.1214 0.4882 0.0613

p4 -0.1214 0.3118 0.0920

p5 0.1214 0.3118 0.138

Table 6. Inde pendent vari ables and objetive func tion

rt x
0

(m)
rt y
0

(m)
rt z
0

(m)

a
(degree

s)

Objetive
function

Lower Limit -1.0 -1.0 -1.0 -180 -

Upper Limit 1.0 1.0 1.0 180 -

Initial Values 0 0 0 0 -0.1559

Optimal Values 0.0681 0.1142 -0.0572 9.91 -0.1639

B2.  Helicoidal path
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C. Multi-objective prob lems

In the case of the planar task the extremity of the
3R manipulator should complete a parabolic path;
for the 3D task the 4R manipulator’s tool has to
describe a helicoidal path. In both cases the mo-
tion of the end-effector follows a cycloidal law. The
periods of the tasks are 6 and 5 seconds for the 3R 
and 4R manipulators, respectively. The Cartesian
coordinates of the sample-points are referred to
frame åt, and different indexes of performance are
associated to some points, as indicated in tables 7
and 10. In the problems we want to determine the
path placement which allows to optimize the value
of the specified indexes by the related manipu-
lator’s configuration when the task is carried out.

The normalization factors used in equation (18)
are previously computed by solving the single-
objective problem for points having a related index
of performance. The obtained values of such fac-
tors are listed in tables 8 and 11. The independent

variables of the planar problem are rt
o
x , rt

o
y , and a 

(rotation about the axis z0 ); in the case of the 3D
path, the additional variable rt

o
y must be included. 

The initial values for such variables, as well as the
obtained optimal values are given in tables 9 and
12. In the same tables the initial and optimal va-
lues of the objective functions are presented. The
joint trajectories corresponding to the optimal
placement are observed in figures 13 and 18. The
progress attained of the normalized indices asso-
ciated to the sample points can be appreciated in
figures 14 and 19. The behaviors of the manipu-
lability and the condition number (both normalized)
during the task are shown in figures 15, 16, 20
and 21. Sequences of configurations of the robots
describing the desired paths are presented in
figures 17 and 22 for the initial and the optimal
placements.
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a) Initial placement:

b) Optimal placement:

t=5 s t=3 s t=0 s t=2.5 s 

t=5 s t=3 s t=0 s t=2.5 s 

  Figure 12.   Simu la tion of the task
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Table 8. Normal iza tion factors and time asso ci ated to

the sample points

Point
Normalization

factor
Value t (s)

p1 h1
* 0.1727 0.0

p3 h3
* 1.0841 3.5

p5 h5
* 1.0841 5.0

p6 h6
* 0.1727 6.0

Table 10. Coor di nates of the sample path points in tå

Point x (m) y (m) z (m)
Index of

performance

p1 0.3722 0.1466 0.1126 Manipulability

p2 0.3587 0.1770 0.1375 -

p3 0.0935 0.3889 0.4005
Condition
number

p4 -0.2330 0.3251 0.6578
Condition
number

p5 -0.2554 0.3079 0.6790 -

p6 -0.2876 0.2780 0.7120 Manipulability

Table 11. Normal iza tion factors and time asso ci ated to 

the sample points

Point Normalization factor Value t(s)

p1 h1
* 0.1526 0.0

p3 h3
* 1.4104 2.45

p4 h4
* 1.4104 3.75

p6 h6
* 0.1526 5.0

Table 12. Inde pendent vari ables and objective

rt x
o  (m) rt y

o  (m) rt z
o  (m) a (degrees) Objective function

Lower Limit -1.0000 -1.0000 -1.0000 -180.0 -

Upper Limit 1.0000 1.0000 1.0000 180.0 -

Initial Values 0.0000 0.0000 0.0000 0.0 -0.3537

Optimal Values 0.0865 0.1233 -0.2438 16.8 -0.6635

Table 9. Inde pendent vari ables and objec tive function

rt x
0 rt y

0 a (degrees) Objective function

Lower Limit -1.0000 -1.0000 -90.0 -

Upper Limit 1.0000 1.0000 90.0 -

Initial Values 0.4000 0.1000 30.0 -0.5967

Optimal Values -0.0206 -0.0378 -11.0 -0.8922

Table 7. Coor di nates of the sample path points in tå

Point x (m) y (m)
Index of

performance

p1 -0.2785 0.5029 Manipulability

p2 -0.2390 0.4614 -

p3 0.0872 0.3701 Condition number

p4 0.1614 0.4143 -

p5 0.2424 0.4845 Condition number

p6 0.2548 0.4979 Manipulability

1. Para bolic path

2. Helicoidal path
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Figure 14. Values of the normal ized indices
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Figure 13. History  of  joint  vari ables  for  the optimal place ment. 3R manip u lator. Multi-criteria
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Figure 16. Behavior of the normal ized condi tion number during the task
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Figure 15. Behavior of the normal ized manipulability during the task
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Figure 18. History of joint vari ables for the optimal place ment. 4R manip u lator. Multi-criteria

Figure 17.     Simulation of the task 

 b) Optimal placement:

a) Initial placement:

t=0 s t=3.5 s t=5 s t=6 s 

t=0 s t=3.5 s t=5 s t=6 s 

Figure 17. Simu la tion of the task
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Optimal values 
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Figure 20. Behavior of the normal ized manipulability during the task
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Figure 19. Values of the normal ized indices 
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b) Optimal placement:

a) Initial placement:

t=5 s t=0 s t=3.75 s t=2.45 s 

Figure 22. Simu la tion of the task 
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Figure 21. Behavior of the normal ized condi tion number during the task
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Conclu sion

General formulations were presented in this paper
to determine the best position and orientation of a
path to be followed by a redundant robotic mani-
pulator. Depending on the requirements of the
user, the quality of a placement can be measured
by using either a single criterion or multiple criteria
of manipulator’s performance. Consequently, the
proposed formulations are addressed to solve both
single and multi-objective optimization problems.
In the single-objective problem, one index of per-
formance associated to a specific path-point is
defined as the function to be optimized. On the
other hand, in the multi-objective problem such a
function is equivalent to a characteristic index
which represents the set of normalized indexes to
be optimized. The proposed formulations take into
account constraints regarding the accessibility to
the manipulator’s task. Indeed, we introduce cons- 
traints in order to: a) demarcate an available phy-
sical space to locate the task; b) avoid trans-
gression of joint limits during the accomplishment
of the task; c) generate continuous joint trajec-
tories on the whole task. 

The case studies examined here showed that
significant improvements of the manipulator’s per-
formance can be obtained by applying our approach.
In such cases all the constraints were satisfied and
consequently the accessibility to the complete
tasks was assured. However, in the hypothetical
case in which a satisfactory solution could not be
found by trying with a first mani- pulator’s aspect,
then further attempts could be accomplished by
using other manipulator’s aspects to satisfy the
accessibility conditions and improve the mani-
pulator’s performance. On the other hand, the
sample points considered in the problems were
chosen by using a criterion of symmetry; never-
theless, both the number of points and the position 
of such points on the path could have an influence
on the level of the improvement obtained for the
indices of performance. Thus, supplementary stu-
dies should be carried out to characterize a sui-
table criterion to solve both questions. Furthermore,

in future works additional constraints will be taken
into account to avoid collisions of the manipulator
when it works in cluttered environments.
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