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Abstract

The complete identification of all relevant design points is of paramount impor-
tance for the reliability analysis of real structures. In this paper a methodology based
on Evolutionary Strategies (ES) algorithm is proposed to perform structural reliabi-
lity analysis of limit state functions with multiple design points. A multidimen-
sional optimization method using ES is first used to obtain a preliminary mapping
of the relevant design points (local maxima). The approximate coordinates of these
points are employed as initial guesses in the HL-RF (Hasofer and Lind-Rackwitz
and Fiessler) algorithm when the First Order Reliability Method (FORM) for series
systems is used to evaluate the system probability of failure. These points are also
used as the central points when Monte Carlo Simulation with Importance
Sampling (MCIS) method is employed in the structural reliability evaluation.
Numerical applications show the feasibility and the robustness of the proposed
methodology.

Keywords: System reliability analysis, multiple design points, evolutionary stra-
tegies, FORM, MonteCarlosimulation,importancesampling.

Resumen
La identificacion de todos los puntos de disefio es de suma importancia en el andlisis de
confiabilidad de estructuras reales. En este articulo se propone una metodologia basada
en el algoritmo numérico de las Estrategias Evolutivas (ES) para llevar a cabo el andlisis
de confiabilidad estructural de funciones de estado limite con miltiples puntos de disefo.
Inicialmente, un método de optimizacion multidimensional utilizando ES se aplica para
obtener la posicion aproximada de los puntos de disefio (mdximos locales). Las coordena-
das de estos puntos son utilizados como puntos de partida en el bien conocido algoritmo
HL-RF (Hasofer y Lind — Rackwitz y Fiessler) para obtener la probabilidad de falla del
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sistema con el método de confiabilidad de primer orden (FORM). Estos puntos también son

utilizados como los centros para la evaluacion de la probabilidad de falla a través del método

de simulacion numérica Monte Carlo con muestreo por importancia (VMCIS). Aplicaciones

numéricas muestran la versatilidad y la precision de la metodologia propuesta.

Desciptores: Andlisis de confiabilidad de sistemas, milltiples puntos de diseio, estrategias

evolutivas, FORM, simulacion Monte Carlo, muestreo por importancia.

Introduction

Randomness in loads, resistances and analytical mo-
dels, causes the existence of a probability that structu-
res do not meet the code standards used for their de-
sign. This probability is known as probability of failure
(¢f) and it can be evaluated mathematically through
the next multiple integral:

pf =P[G(X) sO]:H ...jfﬂ (x)d %, (1)

where f- ( X ) is the joint Probablhty Dens1ty Function
(PDF) of ‘the n basic random vanables X={XX,,.,X,} T
into the limit state function G(X )- The limit state func-
tion is defined in such way that G(X )=0 separates the
failure (G( )(£0) and safe (G (X )>0) domains.

Evaluation of equation (1) is not an easy task becau-
se it involves an n-fold integral over a complex domain.
Various simulation-based and analytical methods have
been proposed to deal with this problem. An approxi-
mation to pf can be obtained by analytical techniques
such as First or Second Order Reliability Methods
(FORM or SORM). The main idea of these methods is
to move the reliability groblem from the space of the
basic random variables X to the space of standard nor-
mal statistically independent random variables U using
a suitable transformation U = T(X ), such as Rosemblatt
or Nataf transformations (Melchers, 2001). In the U
space, equation (1) can be expressed as:

ST T

where ¢y (u;)1s the marginal PDF of a standard normal
random variable U,.

In FORM an approximation to the probability of
failure is obtained by making the failure surface
G(U)=0 linear at the design point U*. This is the point
on the failure surface closest to the origin and with the

@)
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highest probability (local maximum) in the failure do-
main of the standard normal space. The distance from
the origin to the design point is the well-known reliabi-
lity index B =7FJ *Nj Using the reliability index, pf is eva-
luated as:

pf =), (3)

where ®(.) is the Cumulative Probability Function
(CPF) of a standard normal random variable.

~ d0)-o

Contribution to pf
from g,

u,
-/ Failure Domain

g[ﬁ)s 0

Figure 1. Limit state function with two design points

Generally, the FORM approximation gives a reasonable
result for a limit state function with only one global de-
sign point. However, this is not the case when there are
other local design points on the failure surface. A failure
function with two design points is shown in figure 1.
In this case, both design points have important contri-
butions to the total system probability of failure and
significant errors will be induced in it if one of them is
missing. Unfortunately, the optimization algorithms
used in connection with FORM, such as HL-RF ap-
proach, are only able to identify just one design point
without giving any further information about the pos-
sibility of remaining design points. Multiple design
points are also found in structural series system
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problems where the global structural failure occurs
when at least one of various limit states is violated
(Melchers, 2001).

Monte Carlo simulation methods have also been lar-
gely employed to structural reliability analysis. In these
methods N samples 4, i=1,...N, are generated ac-
cording with

fa)

and then it is verified if the structure fails or not for
each one of them. The pf is estimated as the number of
failures divided by Ns. Since Monte Carlo method is ba-
sically a sampling process, the results are subjected to
sampling error that decreases with the sample size. Ho-
wever, using procedures known as variance reduction
techniques the error may be reduced without increa-
sing the sample size. One of such procedures with a
high convergence rate is the Monte Carlo with Impor-
tance Sampling (MCIS) (Melchers, 2001). In MCIS, the
regions of interest for the simulation process are those
around the points in the failure domain having the lar-
gest values for

f. (i), i.e., the design points Ur.
U

Over the last years few research studies on procedures
for searching multiple design points have been publis-
hed. For instance, Der Kiureghian et al., (1998) presen-
ted an heuristic method, based on the HL-RF algo-
rithm, for the systematic identification of multiple de-
sign points. In that method, each time that one design
point is identified, the failure surface is deformed
around this point through a bulge and the HL-RF met-
hod is re-initialized in order to search for another possi-
ble remaining design point. On the other hand, in the
field of nonlinear optimization the so-called Genetic
Algorithms have recently gained more attention to sol-
ve complicated problems (Michalewicz, 1992; Lagaros
et al, 2002). One important aspect associated to these
algorithms is that they are not gradient-based methods
as, for instance, the HL-RF approach used in reliability
analysis.

In this paper the Evolutionary Strategies (ES) algo-
rithm, a class of Genetic Algorithm, is employed to de-
velop a new search methodology that is able to identify
the presence of multiple design points in structural re-
liability analysis. The proposed methodology is applied
in connection with FORM and/or MCIS to evaluate
the probability of failure. Two numerical applications
are presented: the first one is a non-linear limit state

function with two design points, and the second one is
a limit state function with a series system representing
failure mechanisms for a plane frame. The results obtai-
ned show the robustness and accuracy of the proposed
approach.

Reliability analysis of limit state functions
with multiple design points

The proposed methodology to perform the reliability
analysis of functions with multiple design points con-
sists of the following main steps:

1. Mapping of the approximate position of the relevant
design points (local maxima) on the integration
domain through the ES algorithm;

2. Improving the precision of design points coordinates
applying the HL-RF method for each local maximum
point identified in Step 1 when FORM approach (for
series systems) is chosen for computing the probabil-
ity of failure (an schematic representation is shown
in figure 2); and/or

3. Using directly the points identified in Step 1 as the
center points for the simulation process when the
probability of failure is evaluated by MCIS.

Hyperplanes at

Preliminary i . .
. . u : Design Points
Design Point 2 \ "7 &
obtained with ES L
algorithm Existence
Region of a
Design Point
""" Preliminary
""" Design Point
— obtained with ES
Th algorithm
“Exact” Design
Points obtained with . «
FORM " =P Ulg,@=<0)

Figure 2. Schematic representation of the proposed
methodology

Searching design points with
evolutionary strategies

Finding the entire set of relevant design points (local

maxima) is, in general, a very difficult problem to be
solved by the classical gradient-based optimization
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methods. The so-called Genetic Algorithms (Michale-
wicz, 1992) and Simulated Annealing Methods (Corana
et al., 1987) are much more effective and reliable to do
this task because they have the capability to step up
and out off regions near local maxima. Among the seve-
ral Genetic Algorithms presented in literature there is
the Evolutionary Strategies (ES) approach (Lagaros et
al., 2002; Greenwood, 1997). It is based on the princi-
ples of adaptive selection found in the natural world.
Each generation (iteration of the algorithm) takes a po-
pulation of individuals (potential solutions) and sto-
chastically modifies the genetic material (problem para-
meters) to produce the new offspring.

For the application of the ES algorithm to structural
reliability problems it is more convenient to extend the
integration domain in equation (2) for all R" space,
using the following indicator function:

@ <oy=1 V=0 @
0 if g(U)>0

Using equation (4), equation (2) can be re-written as:

pf=]] [ lgt idi =[] ..
[ 11 so]{f[ 'y (u,)}z 7

Due to the rotational symmetry and exponential decay
of the PDF in the normal standard space, the design
points have the highest likelihood among all points in
the failure domain (figure 3). Hence, the problem of fin-
ding these points can be solved by maximizing the ar-
gument of the integral in equation () in the R" space.
Thus, the design points’ search process can be defined
as the unrestricted optimization of the objective func-
tion H (U)

Maximize H ( ) <0] H (I)U (6)
The optimization problem in equation (6) can be
solved through a simple version of the ES algorithm
(Barranco, 2002). This algorithm is based on a popula-
tion consisting of a single individual submitted to only
mutation operations during his life. Two real vectors
represent each individual: one containing a point in the
search space | Uand other with the corresponding muta-
tions N(0,6). The latter corresponds to a joint
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statistically independent normal vector with each one
of its components having zero mean and a standard de-
viation o;. The search algorithm is presented schemati-
cally in figure 3 and consists of the following steps:

1. Establish the lower and upper search limits, 4, and
“y, for each random variable u,. ‘

2. Set the first individual of the populatlon This initial
point can be made equal to Us ={00,...01"; |

3. The objective function in eguation (@ HQU),, is
evaluated for each individual U, . In this step, evalua—
tion of the function g(U, ) is required and then, trans-
formation of the variables X =T"" (U) must be
performed;

4. The offspring U,+1 of the individual U/ is generated
by applying the following mutation operator:

Uy =U;+N'(0,0) @)

where N' (0,0) is one artificially generated realization
of the random mutation vector N(0,c). A first esti-
mative of o, =(u, —u,)/6 can be assumed in order
to extend the search field over all integration do-
main. During the subsequent simulations the stan-
dard deviations can be reduced in order to increase
the numerical precision of the search algorithm;

5. The objective function H(U;) is evaluated for the
new population member U;+1. This offspring mem-
ber will be only accepted in replacement of his pro-
genitor if it satisfies all the problem constraints, and
produces a better result for the objective functlon
ie. H(U/+1 )>H(U/) If these cond1t1ons are not sat-
1sfled the offspring is eliminated and its progenitor
continues as member of the population;

6. The algorithm continues through steps 3 and 4 until
a given maximum number of simulations is reached.
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Figure 3. Evolutionary Strategies algorithm for searching the design points

The simulation-based procedure established in steps 1
to 6 above gives an approximation to just one design
point. The algorithm is extended to find multiple de-
sign points by including constraints around the design
points previously identified. Mathematically this is ex-
pressed by the updated optimization problem:

g(U ) <0] H(I)U (u,),
>R forall b

Maximize H( )=
®)
subject to: |U, ~Uy

where U} are all k-design points previously identified,

Jo; v

is the distance between the current point and k-th de-
sign point, and R is a chosen radius of a hyper-sphere in
the R" space.

In summary, after a design point has been found the
remaining points are searched with the same algorithm
now applied over the region of the R" space outside the
union of the hyper-spheres centered at the design
points previously identified. Limited experience sug-
gests a value in the range 1-3 units for R. Figure 4 shows
the search space for a third design point, after U and
Us have been found. The algorithm is repeated until all
the significant or a maximum specified number of de-
sign points in the integration domain have been found.
The former condition is verified when the latest identi-
fied point Ut falls far away from the failure surface,
ie., gUr* >A, where A~ 0.5.

The algorithm presented above is easily adapted to
consider series systems composed of M individual limit

state functions g, ([7) i=1,.M (Madsen et al., 1986).
This is done by just changmg the indicator functlon in
equations (4) and (5) for I[g, (U) <0n..ng, (U) <0],
where it is equal to one if at least one of the individual
failure functions satisfies the condition g, (U) <0 and
zero otherwise.

True design points using HL-RF method

Because the random nature of the search algorithm pre-
sented above, the precision of the results for the design
points is dependent on the number of simulations. In
order to increase the precision of the results without in-
creasing the number of simulations the well-known
HL-RF method (Melchers, 2001; Madsen et al., 1986)
can be used.

Influence
Hypersphere of

/Design Point

Figure 4. Search space for a new design point
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This method is an optimization algorithm used in
connection with FORM and SORM in the reliability
analysis of structural systems. The objective of the
HL-RF method is to obtain the design point U* by sol-
ving the following constrained optimization problem
in the standard normal random variables U space:

q‘ =U} +..+U?, subject to: g(f/) =0 9)

The gradient-based solution technique of equation
(9) consists in the generation of a sequence of points
Ui, i=12,3,...according to the rule (Zhanger al., 1994):

min

Ui :l_}i+}\.‘- 2,'
(10)

where 4, is a search direction vector, Vg((_}f) is the gra-
dient of the limit state function and A, is the size of the
increment. %, is selected such as the inequality
m(Ui1) <m(U,) between the merit function:

w0 4

evaluated in two consecutive points is held. In the me-
rit function, ¢ is a parameter satisfying the condition

+C

/ Vg(ﬁ)H

in each step. User is considered as a design point U
when the reliability index error Q in two consecutive
iterations is less than or equal to an adequate tolerance
margin, commonly in the order of 1x10.In the present
approach, each starting point Uo in HL-RF technique is
taken as one approximate design point identified by ES
algorithm. The HL-RF is repeated as many times as the
number of identified design points. The final set of de-
sign points is obtained by taking apart all repeated
points, if they exist.

Evaluation of the probability of failure
FORM Approach

Under the FORM approach, the total failure probabi-
lity associated to a series system or a single limit state
function having multiple design points can be calcula-
ted through the unions and intersections of the failure
domains associated to the hyper-planes tangent to each
design point, as shown in figure 2. The probability of
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failure is evaluated with the following equation (Mad-
sen et al., 1986):

Np Np Np Np Np

rf= ZP DIDRIEDIDIIEN

j=1 i>j j=1 i) I>i
(11)
P/v = @(—B/ ) al’ld Pﬂ = ®(_B/ 7_B/ lp ji )

where N is the number of elements of the system, B, is
the reliability index associated to the j-th design point,
p, is the correlation coefficient between two hyper-
planes, and @(.,.,p) is the standard bi-normal CPF. Due
to the fact that the individual failure probabilities P, are
generally small, the third order terms P, in equation
(11) can be usually neglected.
The standard bi-normal CPF can be calculated with
the equation (Madsen et al., 1986):
P
OB, B,,p,) = D(B).O(B,) + [ o(-B, B, ,2)dz
0

(12)

2m1-2° 2 1-2°

where ¢(.,., z) is the standard bi-normal PDF.

(P, B, 2)

Monte Carlo Simulation with
Importance Sampling

Using Monte Carlo simulation with Importance Sam-
pling (MCIS) technique for a structural reliability pro-
blem with multiple design points, the total probability
of failure can be estimated by (Melchers, 2001)
pf=[] o [ Hgl) <0]
(13)

N R
where Y o, i (1)

k=1 U

is a new sampling PDF and o, is a weight factor. Nume-
rically the integral in equation (13) can be estimated by

f~—21 [g(ii) < [U@,)/(ﬁmkhg(ﬁf)] (14)
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where N is the total number of samples (simulations)
u: generated artificially from the new sampling PDF.
As it is shown by Melchers (2001), the k" parcel of this
function can be obtained by just shifting the peak of
the joint PDF fU () to the design point:

U; =(Ll>;k ,.,.,u;"yk) , e,

o (15)
hg (u) = H Wu, —uj‘k)

and the k-th weight factor is giving by
— N —
%=@wm/ﬁgam (16)
j=1

Standard formulae exist to evaluate the number of
simulations N, needed to achieve a desired level of con-
fidence on the estimator given by equation (14) (Mel-
chers, 2001). When compared to the crude Monte Carlo
simulation approach the Importance Sampling techni-
que greatly improves the convergence rate to achieve
the failure probability, i.e., the number of simulation N
is significantly reduced. It is important to notice that it
is not necessary to employ the exact design points in
equation (14) to take advantage of the MCIS techni-
que. Then, the points identified by the ES algorithm
described above can directly be used in connection with
MCIS technique.

Numerical applications

The proposed methodology is applied initially to a case
of bi-dimensional limit state function with multiple de-
sign points in order to illustrate some relevant aspects
on convergence and precision of the proposed metho-
dology. In the sequence, the reliability analysis of one
plane frame structure having seven random variables is
presented.

Example 1. Parabolic Limit State Function

The parabolic limit state function considered in this
example is given by,

G(X)=50-X, —0.5(X, —0.1)> (17)

where X, and X, are normal standard uncorrelated ran-
dom variables with the characteristics presented in ta-
ble 1. In this case, the original space X and the standard
normal space U are the same. As pointed out by Der

Kiureghian et al. (1998), this failure function has two
design points.

Table 1. probabilistic parameters of
random variables for example 1

Distribution Parameters

Random Distribution

Variable Type M G
X, Normal 0.0 1.0
X, Normal 0.0 1.0

In the Evolutionary Strategy search algorithm, the ori-
gin of the standard normal space Uo ={00,..0} was
used as the first member of the population. After the
first design point has been found, a hyper-sphere with
radius equal to three units (R=3) was centered on it in
order to constrain the search space for the next point
and so on. To investigate the precision of the ES algo-
rithm, the search for design points was carried out
using different number of simulations, from 100 to
100,000. The ES approximations to design points are
shown in figure 5, while figure 6 presents the corres-
ponding errors in the approximated reliability indexes
with respect to the ones obtained with FORM.

Approximations to

) « Approximations to
Design Point 1

B, Design Point 2

u
2 \q 6 1

Figure 5. Approximations to the design points obtained
with ES algorithm. Example 1

O Design Point 1 W Design Point 2

g
5075 T ——
5 [Brom = Pes |
= Error =
3 rror -
L T
=
Kl
=
E (.95 | S
8
]
PP Y O B "I | |_[
g 2 g 2 2 2 g 2
g 8 & & g8 g8 & 2
= @ < B S
Mumber of Simulations

Figure 6. Errors in reliability indexes obtained
with ES algorithm. Example 1
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Figures 5 and 6 show that the search algorithm ba-
sed on ES is very efficient to identify multiple design
points. For example, for 10,000 simulations or more the
error in reliability indexes obtained using only ES algo-
rithm is less than 0.1% and with only 1,000 simulations
the error is not more than 0.25%. Figure 7 presents the
mean number of iterations that the HL-RF method
used to find the design points, considering the guesses
obtained with ES algorithm as starting points. It is no-
ticed that even with a small number of 100 simula-
tions, the mapping obtained by the ES is enough for the
HL-RF method to identify the correct design points. It
is also noticed that when the number of simulations in-
crease the number of simulations in the HL-RF decrea-
ses, once the design points identified by the ES algo-
rithm are very close to the correct ones as illustrated in
figure 6.

Table 2 presents both the approximate design
points obtained with ES (case of 10,000 simulations)
and the ones using HL-RF method. The final design

points are the same as those published by Der Kiureg-
hian er al. (1998).

In table 3 the total probability of failure is evaluated
using the FORM approximation, considering isolated
and joint contribution of each design point. Table 3 al-
so includes the result from MCIS approach using the
approximate design points obtained with ES and the
exact ones obtained trough numerical integration. The
number of simulations for this latter approach has been
calculated automatically in order to obtain a coefficient
of variation (CoV) of 2.5% in the estimated probability
of failure (Melchers, 2001).

It is observed that the system probability of failure
computed by FORM taking into account only the con-
tribution of the first design point presents an error of
39% and considering only the second point the error is
around of 67%. However, when the contributions of
both design points are considered the error is only of
6%. MCIS approach gives almost the exact probability
of failure.

HL-RF method

——4&@—— Design pont 1
——&—— Design point 2

Numbsr of itsractions in

Y

100 1000

10000 100000

ES algonthm number of smulations

Figure 7. Number of iterations of HL-RF method to obtain true design points. Example 1

Table 2. ES and HL-RF design points. Example 1

Evolutionary Strategies

HL-RF method

Design Point

U, U, U, U, B Iter.
1 -2.788 0.830 -2.741 0.965 2.906 3
2 2.934 0.984 2.916 1.035 3.094 2
Table 3. System failure probability. Example 1
Isolated Isolated T s
Ut and U3
> > MCIS Exact
Uf , FORM  Us, FORM FORM rac
0.00183 0.00099 0.00282 0.00304 0.00300
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Example 2. Plane Frame Failure

This example considers the possibility of failure of the
plane frame presented in figure 8 by means of plastic
hinge mechanisms as investigated by Madsen et al.
(1986). The failure function for this structure can be
written by

G(X) =min[g, (X), g, (X),g;(X)] (18)

which represents a series system of three failure mecha-
nisms given by the following limit state functions:

g (X)=X, +X, +X, +X, —hX,

g, (X) =X, +2X, +2X, + X, —hX —hX, (19)

g.(X) =X, +2X, + X, —hX,

In equation (18) min[.] means the minimum value
of [.]. The characteristics of the statistically indepen-
dent random variables are presented in table 4. It is

known from Madsen er al. (1986) that equation (18)
presents three design points, each one corresponding to

points obtained by ES algorithm, and used as initial
guesses for the HL-RF approach, are able to identify co-
rrectly the design points as shown in table 5. The re-
sults found for the probability of failure are compared
with those from crude Monte Carlo simulation in table
6. As it can be observed the results obtained are in very
good agreement.

H=X, l

T =x,

=
I
Lh

M=X,

S 0=10 ———F

Figure 8. Plane frame structure (N; node bending strength)

Table 4. Random variables properties for example 2

Distribution parameters

a limit state function presented in equation (19). In }\1]2?12%52 D iStTri}E’:etion Standard
(Madsen et al., 1986) the design points are obtained, Mean deviation
differently of the approach presented in this work, by
separated reliability analyses for each limit state func- X1, %,%3,X,,X; Logoormal 134.90 13.49
tion g, (X). X Lognormal 50.00 15.00
By setting the maximum number of simulations % Loenormal 40.00 12.00
equal to only 100 and R=1, the approximated design 4 g ' '
Table 5. Design points in the standard space for example 2
Random Proposed Methodology Madsen et al., 1986
Variable Point 1 Point 2 Point 3 Point 1 Point 2 Point 3
X -0.227 -0.221 0.000 -0.228 -0.222 0.000
X, -0.227 0.000 -0.290 -0.228 0.000 -0.289
X, 0.000 -0.433 -0.564 0.000 -0.432 -0.564
X, -0.227 -0.433 -0.290 -0.228 -0.432 -0.289
X -0.227 -0.221 0.000 -0.228 -0.222 0.000
X 2.673 2.391 0.000 2.672 2.382 0.000
X, 0.000 1.456 3.366 0.000 1.466 3.368
B 2.71 2.88 2.71 2.88 3.44
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Table 6. System failure probability. Example 2

Reliability Proposed Methodology Madsen et al., 1986 Crude Monte Carlo
parameter EORM MCIS EORM Method

Pf 0.004638 0.004772 0.004670 0.004783

Be 2.602 2.592 2.601 2.591

As this problem is solved in R space, it is not easy to
find with high precision the design points directly
through ES algorithm. In order to achieve a high preci-
sion, the number of simulations must be in the order
107-108. However, using the ES algorithm in connec-
tion with HL-RF approach the number of simulations
drops to the order of 102.

Conclusions

The complete identification of all design points is of pa-
ramount importance for the reliability analysis of real
structures due to the serious errors that can be introdu-
ced in the failure probability evaluation if any of them
is neglected. In this paper a new simple and practical al-
gorithm based on Evolutionary Strategies (ES) is pre-
sented to cope with the problem of multiple design
points. Firstly, the ES algorithm is used to map over the
integration domain the approximate position of the re-
levant design points (local maxima). Secondly, the
coordinates of these points are used as initial guesses in
the HL-RF algorithm to increase the numerical preci-
sion of the relevant design points coordinates. Finally,
the structural failure probability can be evaluated by
FORM approach for series systems or by Monte Carlo
Simulation with Importance Sampling (MCIS) method
using the identified design points as the center of the
simulation process regions.

Trough the numerical examples presented in this
work the ES algorithm showed to be a simple, very ef-
fective and reliable methodology for the identification
of multiple design points. Depending on the number of
simulations this algorithm can even identify precisely
the position of the design points. This depends heavily
on the dimension of the integration space, ie., the
number of random variables considered. However, its
main advantage is the possibility of performing a syste-
matic mapping of the number and position of all rele-
vant design points on the integration domain using
only a small number of simulations (around 100). With
this rough mapping, the HL-RF approach easily arrives
at the design points with a required precision.
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One important point in the reliability analysis of some
real structures is that the limit state functions usually
cannot be expressed by means of analytical expressions
and must be evaluated implicitly, for instance, through
various finite element structural analyses. This aspect
increases the computational costs of the analysis. To
cope with this constraint an adaptive multidimensio-
nal interpolation approach, as presented by Barranco
(2002) and Lima (1997), can be used to approximate
analytically the true failure function. In this approach
an initial set of interpolation points is successively up-
dated in the interpolation scheme to encompass the re-
gions associated with the maximum likelihood points.
These points are quickly identified by the proposed
search approach based on the approximate failure
function.
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