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Abstract

Recent numerical studies have proved that multiquadric collocation methods can
achieve exponential rate of convergence for elliptic problems. Although some inves-
tigations has been performed for time dependent problems, the influence of the
shape parameter of the multiquadric kernel on the convergence rate of these
schemes has not been studied. In this article, we investigate this issue and the influ-
ence of the Péclet number on the rate of convergence for a convection diffusion
problem by using both an explicit and implicit multiquadric collocation techniques.
We found that for low to moderate Péclet number an exponential rate of conver-
gence can be attained. In addition, we found that increasing the value of the Péclet
number produces a value reduction of the coefficient that determines the exponen-
tial rate of convergence. Moreover, we numerically showed that the optimal value
of the shape parameter decreases monotonically when the diffusive coefficient is
reduced.

Keywords: Radial basis functions, multiquadric, convection-diffusion, partial
differential equation.

Resumen
Experimentos numéricos recientes sobre los métodos de colocacion con mulitcuddricos han
demostrado que éstos pueden alcanzar razones de convergencia exponencial en problemas
de tipo elipticos. Si bien, algunas investigaciones se han realizado para problemas depen-
dientes del tiempo, la influencia del pardmetro ¢ del niicleo multicuddrico en la razon de
convergencia de éstos esquemas no ha sido estudiada. En la presente investigacion se ana-
liza este tépico y la influencia del niimero de Péclet en la razon de convergencia para un
problema convectivo difusivo, considerando un esquema de discretizacion implicito y
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explicito con técnicas de colocacion con mulitcuddricos. Demostramos numéricamente que pa-

ra valores bajos a moderados del coeficiente de Péclet se obtiene una razén de convergencia ex-

ponencial. Ademds, encontramos que al aumentar el niimero de Péclet origina una reduccion

en valor del coeficiente que determina la razon de convergencia exponencial. Adicionalmente,

determinamos que el valor éptimo del pardmetro ¢ decrece monétonicamente cuando el

coeficiente difusivo es disminuido.

Desciptores: Funciones de base radial, multicuddrico, conveccion-difusion, ecuacion dife-

rencial parcial.

Introduction

It is well known that within the study of the numerical
multiquadric unsymmetric collocation methods for
partial differential equations (Kansa, 1990), a major
problem is the determination of the shape parameter.
Several authors have avoided the use of this radial basis
function due to this difficulty, see; (Boztosun et al.,
2002; Zerroukat et al., 2000; Liet al., 2003). Some recent
studies has been done to investigate this problem,
(Fornberget al., 2004; Larsson et al., 2005). In particular
(Cheng er al., 2003), has treated an elliptic problem
showing that an exponential rate of convergence can be
attained for /¢ refinement multiquadric collocation
schemes. In the case of evolutionary convection-diffu-
sion problems, the number of articles are even fewer. In
(Sarra, 2009), the author recently studied the behavior
of adaptive multiquadric methods concluding that
their performance is comparable to spectral Chebyshev
techniques. However, among the several open prob-
lems in this field, the influence of reducing the diffu-
sion coefficient on the behavior of the shape parameter
of the partial differential equation, is up to the authors
knowledge, an open problem which has not been stud-
ied. In this article, by using both an explicit and im-
plicit multiquadric collocation techniques applied to a
convective diffusive problem, we numerical study the
effect of the shape parameter on the spectral rate of
convergence of these methods. We found that increas-
ing the value of the Péclet number produces a value re-
duction of the coefficient which determines the expo-
nential rate of convergence. Moreover, we numerically
showed that the optimal value of the shape parameter
decreases monotonically when the diffusive coefficient
is reduced. This suggest that convection dominated
problems may be efficiently solved by means of /-c
multiquadric collocation methods at an exponential
rate of convergence.

We also numerically verified that the implicit
scheme is unconditionally stable and that the increase
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of the time step parameter reduces the exponential rate
of convergence, i.e. decreases the slope of the corre-
sponding straight lines in a semi-log scale. We also
found that for parabolic dominated problems the range
of the shape parameter that leads to spectral rate of
convergence is larger.

This paper is organized as follows. In section 2, we
introduce the continuous advection-diffusion problem.
Section 3 is devoted to introduce a meshless collocation
method for time dependent problems. In section 4, we
conduct a series of experiments to determine the spec-
tral convergences for both explicit and implicit schemes
with multiquadrics, we further explore how does the
shape parameter influence the convergence behavior.
Finally, conclusions are given at the end of the paper.

Advection-diffusion equation

Although in this article we shall be concerned with a 7D
problem, we shall state the continuous problem in 3D.
This is due to the fact that the code of the algorithm is
essentially the same in one or three dimensions.

The three-dimensional advection-diffusion can be

written as
w:ﬁvzu(x,r)www) xeQe®, (1)
t

together with the boundary and initial conditions
c ulx,t)+c,Vulx, 1) =f(x,1) xedQ,t>0, (2)
ulx, 1) =uy(x) 1=0, ®)

where u(x,t) is the unknown function at the position x
at time ¢, V the gradient differential operator, Q a
bounded domain in R3 0 Q the boundary of Q, B the
diffusion coefficient, u =[n, 1,1, 1" the advection co-
efficient (or velocity) vector, ¢, and ¢, are real constants,
f(x,t) and u(x) are know functions.
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A large number of real problems can be modeled by
the advection-diffusion equation. For example, disper-
sion of polluting agents, transport of multiple reacting
chemicals, variation of asset prices on stock-market and
heat transfer.

Implicit and explicit schemes

We discretize equation (1) with respect to time and
space by means of the standard 6 scheme, 0 <8<1,
which can be expressed as follows

+

t+ At

u(x,t+At) —u(x,1) = AtOPV *u

WVl )+ A(1=0) BV *ul 1 Vu|,), 4)
where Ar is the time step. Using the notation
u" =u(x,t")and t" =t"" + At,equation (4) can be refor-
mulated as

u" oV i Ve =" oV it +EVu", (5)

where o =—B0At, n=[n,,n,,n ] =—0Apn,v=PA(1-6)
y &=[E,,§, ¢, 1" =At(1-0)u.. Moreover, this last equa-
tion (5), can be expressed in a more compact form

H.u™" =H u", 6)

where H, =1+aV’ +n-Vand H_=1+vV’ +£.V. The
right hand side of (6) represent the know solution at
time ¢, , while left term is the unknown solution at the
time ¢, , . The selection of 6 in equation (4) determines
whether the method is an implicit scheme, 6=1/2, or
an explicit scheme 6=0.

Radial basis functions method

In this section, we depict how to apply Kansa’s unsym-
metric collocation method to the initial value problem,
defined by (1), (2) and (3). Let {x,}, = Q be N colloca-
tion nodes, and we assume that these nodes can be di-
vided in {x,}/ interior nodes and {x, }‘l\‘_;\,ﬁl 9
boundary nodes. In order to obtain the approximate so-
lution @(x,t) to the exact solution u(x,t) of the initial
value problem, we first define the radial anzat & (x,t)
given by

7,0 =3 b, O, ], %

where A (t) are the unknown time dependent coeffi-
cients to be determine at each time step. Here ¢(||-|),
where ||- | is the Euclidean norm, is any sufficiently dif-
ferentiable semi-positive definite radial basis function
(RBEF), see table 1. Substituting (7) in (5) and applying
the boundary condition (2) with ¢,=0 and ¢, =1, we
obtain

[®+ad '+ D NV =[O+ vD '+E- DN, (8)

where the matrix @ is defined as

e, =, ) e, —xy )
. ¢<sz:le> #~, dl
O =) 5 oy =2

which is a symmetric matrix ®' =®. The RBFs approx-
imations of the gradient and Laplacian are expressed as
follows:

| ¢x(x1 —le) (I)x(xl _XNH) |
o= ¢x(le _le) ¢x(xf\vl N )
Wew, =5 rn, o ]
L d)(x[\v —X H) ¢x(‘x1\r —Xy ) |
and
[ ¢xx(x1 —X H) ¢.\‘x(x1 —Xy ) 1
S Lt N (e ) |
(I)(leH X H) (I)(xwln Xy )
L (I)(XN ! H) (I)(‘xN Xy ) i

where the matrices ®, @ and @'e R"*". The spatial
derivatives are applied over the radial basis function ¢
and only affects the interior nodes.

If we consider the explicit scheme; that is 8=0,
equation (8) can be written as

ONH =[D+ ABD ' +Atp - DN 9)

where At is the time step length.
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Table 1. Global, infinitely smooth RBFs

RBE Definition
Multiquadric or,c) = NN
Inverse - .,
Quadratic &(r,c)=1/(r +c)
Inverse - —
Multiquadric &(r,c)=1/ m
Gaussian or.c) = )

The RBFs are insensitive to spatial dimensions and
it is easier to prepare the code to solve partial differen-
tial equations (PDEs) in comparison to meshes based
methods. To illustrate this problem more clearly, we
show the pseudo-code to solve the general time de-
pendent advection-diffusion problem with an explicit
method (9); see Algorithm 1.

The output of the Algorithm 1 is the vector A(r),
that is used to compute the numerical solution #(x,)
by the interpolation equation (7), which it has a com-
plexity O(N) for each interpolation node.

At each time iteration of Algorithm 1, we solve an
algebraic linear system of equations ®X'*'=H by
Gaussian elimination with partial pivoting, with com-
plexity O(tN*). The Algorithm 1 has t=t_, /At itera-
tions, in consequence the complexities are O(tN?) in
time and O(N *) in space.

Algorithm 1
Explicit method

— Compute @ and his derivatives @', @'

— Approximate the initial condition ®A’ =u(x)
and initialize t=0

while:<:__ do

— Projection :
H =[O+ ABD"+Arp -

— Correction:
H, =f(x;,t+A1), x, €0Q

— Solution: ®N**! = H
t=t+ At

end while
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The implicit scheme, 6=0.5, can be implemented in
a similar way as showed above. It is only necessary to
change the time step increment At to At/2, and in the
stage Solution of the Algorithm 1, we require to solve
the following interpolation problem

At At 1
O-——BD'-—-nd N =H.
[ ZB T ]

The implicit method is unconditionally stable and
has second-order accurate in time, the explicit method
is conditionally stable and it is only first order accurate
in time. The stability analysis based on algebraic sys-
tem’s eigenvalues can be found in (Zerroukat et al.,
2000).

It is known that the accuracy of the multiquadric
interpolant depends on the selection of ¢ (Carlson ez al.,
1991; Rippa, 1999; Fornberg et al., 2004; Larsson et al.,
2005). When ¢ — o the multiquadric interpolate be-
comes more accurate but simultaneously the condition
number increases in magnitude; see (Schaback, 1995).
A fundamental, and by no means an easy problem, is to
find the best value ¢ before the algebraic system become
numerically unstable.

In our numerical examples, we have used the
multiquadric (MQ) function shown in table 1, where
the shape parameter is selected by using the following
inequality

HLI(X, tmax JC,‘+1 ) _Zr(x7 tmax JC,‘+1 )H2 <

(10)

Hu(x7tmaxlci)_ilv(x t ¢ )

7 max 7 i

27

where u, 7" are the analytical and numerical solution re-
spectively. We selected the increments of ¢ in such way
that ¢, =0.1-1with i e N. In fact when (10) is satisfied,
we increase the ¢ value; otherwise we choose the last ¢
that meets (10).

Convergence study for different
Péclet numbers

It is well know that for convective dominated prob-
lems, the numerical solution tends to present a highly
oscillatory behavior close to the regions where the solu-
tion is sharp. In this section we numerically study the
convergence rates of implicit and explicit collocation
methods for different Péclet numbers. We emphasize
the study of the numerical behavior of the rate of con-
vergence for /i-refinement schemes. Our aim is to show
that for moderate Péclet numbers both schemes


http://dx.doi.org/10.22201/fi.25940732e.2009.10n3.018

DOTI: http://dx.doi.org/10.22201/£i.25940732¢.2009.10n3.018

J.A. Munoz-Goémez, P. Gonzélez-Casanova and G. Rodriguez-Gdémez

preserves an exponential order of convergence. And we
show how this behavior is changed. We also study the
convective effect on the shape parameter.

Linear convection-diffusion problem

Throughout this paper we shall consider the following
linear advection-diffusion equation in one-dimension:

ou 0%u ou
=B——u—, 11
Ot B@xz H ox (an

together with Dirichlet boundary and initial conditions
u(©,1) =ae”™ , u(6,t) =ae", >0 (12)
ulx0)=ae™. (13)

The analytical solution is given by

_ 2
how S TREVR D, (14)

uly,)=ae’™, y
2

where B is the diffusion parameter while p is the
advection velocity. Throughout this paper we will use
the values, a=107 and b=0.5, and the explicit and im-
plicit schemes with multiquadrics will be referred as
EMQ and IMQ respectively.

Experimental error analysis
for implicit method

Our goal in this section is to experimentally determine
the IMQ convergence rate. For this purpose, the follow-
ing parameters where selected: tmax=1 with At=0.01;
the nodes are taken equally spaced on the setthe set
ually spaced on the set N={10,20,...,50}, and x<[0,6].

When we restrict the Péclet = /B << 30 the ana-
Iytical solutions are smooth. On the other hand, if
Pe—30 the analytical solution presents greater gradi-
ents near to the origin. Holding fixed the convective co-
efficient p and varying the diffusion term B on {0.1,
0.02, 0.01, 0.005, 0.0033}, we determine 5 test cases for
which we analyze the convergence rate. For all cases,
the shape parameter is determined by (10) with N=>50
and tmax=1.

Figure 1 shows the convergences rates of IMQ collo-
cation method obtained for the following five test
cases: a) B=0.1, u=0.1 with c=1.3, b) p=0.02, u=0.1
with ¢=1.3, ¢) =0.01, p=0.1 with c=1.2, d) =0.005,
u=0.1 with c=1.3 and e) =0.0033, p=0.1 with c=1.2.
We can read this picture as: holding fixed the shape

parameter and increasing the number of nodes, the ap-
proximation error converge in an exponential way.

T 1
—— Pe=1  p=01 =01 ||
—4- Pe=5 (=002 u=0.1 []
-5 Pe=10 (=001 u=0.1 []
B —— Pe=20 p=0.005 p=0.1

Pe=30 (=0.0033 n=0.1 []

L L L L L
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 1. Exponential convergence for 5 test cases with
implicit multiquadric, at time tmax=1

We would like to remark that the major accuracy
obtained corresponds to small Péclet numbers, which is
related to the predominant parabolic case. As we in-
crease the Péclet number; see figure 1, from below to
top, the slope of each line decrease, besides this reduc-
tion the scheme is exponentially convergent.

For completeness, in figure 2 we display the form of
the analytic and numerical solution of the five test
cases analyzed.

P e
# Pe=1 =01 1=0.1
4 Pe=5 (=002 ;=01
0 Pe=10 (=001 =01 [|
¢ Pe=20 p=0.005 u=0.1
© Pe=30 [(=0.0033 p=0.1 |
— Analytical

-20
0

Figure 2. Analytical and numerical solution with different
values of B, at time tmax=1

As it has been showed in (Madych and Nelson,
1990; Madych, 1992), there are two ways to decrease
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the approximation error for the interpolation case: in-
creasing the nodes number (h-refinement) or increasing
the shape parameter (c-refinement). An example of
h-refinement is given in figure 1, which is the tradi-
tional way to increase the accuracy. However, /-refine-
ment has two drawbacks: as the number of nodes be-
comes larger the memory storage increases as well as
the computational effort. As it has been observed in
(Cheng er al., 2003), decreasing / without correspond-
ing change in ¢ is equivalent to fixing # and increasing c.

Our task is now to explore the c-convergence for
time dependent problems. For this purpose consider the
numerical scheme IMQ with the following parameters:
N=30, At=0.001, B= 0.9, u=0.4 and tmax=1.

Figure 3 shows in a semilog scale the RMS for each ¢
that belongs to the set [0, 2.5] with increments of 0.1.
We can observe that increasing the ¢ value, the RMS de-
crease in an exponential way. When ¢>2.5, we have an
overflow in the numerical solution, owing to the
ill-conditioned of the algebraic system.

log, RMS

e *\\i

05 1 15 2 25
Shape parameter

Figure 3. Exponential convergence of implicit
multiquadric solution for fixed N=30
and variable shape parameter ¢ at time tmax=1

Now we consider the case where the coefficient ve-
locity p dominate the diffusion term B; Pe=1000. In or-
der to capture the region of high gradient near to the or-
igin (x=0) and diminish the numerical oscillations, it is
necessary to use a very small 4 value. This can be ac-
complished in two ways: by means of the classical Car-
tesian /-refinement scheme or an adaptive node refine-
ment scheme (ANR). We select the second approach
because it has been showed to be computational effi-
cient (Munoz-Gémez et al., 2006; Driscoll et al., 20006).
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The ANR scheme is based on the error indicator
function n(x), which can be understood as a function
which reflect the local approximation quality around
each node, and serves to determine where the approxi-
mate solution #(x,t) require more accuracy. For each
node x, the local approximation [z (x,t) is built with a
set of neighborhoods N /x, using the Thin-Plate
Spline radial basis function with a polynomial of degree
1. Now we define the error indicator as a local error of
the interpolation function

nx) =[x, =lalx,1)], (15)

based on this error indicator (Behrens et al., 2002), we
can define the rules to refine/coarse the nodes.

Definition 1

We say that a node xeQ is flagged to be refined if
N(x)>0,, otherwise if 1(x)<6, the node is flagged to be
coarse, with 6.<6,.

Observe that each node can not be refined and re-
moved at the same time. For each node x; flagged to re-
fine we insert 2 nodes
o +%(x[ —X,,), X, =X, -i—%(x,+1 —x,).

Each node x; marked to remove is erased only when
the nodes {x, , ,x, , } are marked to remove. This sim-
ple rule permit us to avoid the elimination of consecu-
tive nodes. Each time that we refine/remove nodes, is
necessary to construct the new matrices of derivatives
@', @', and the matrix ®. In addition, we require to in-
terpolate the current numerical to the new grid to ob-
tain the new vector %; see section Radial Basis Func-
tions Method.

The ANR scheme depicted above is applied each t
steep times, in our case we select t=2. This means that
each two step times we ask if the numerical approxi-
mation based on the current set of nodes require to re-
fine or to remove nodes. The previous scheme is applied
for the initial condition in a loop while exists nodes to
be refined, in each steep of the loop we initialize the
time at t=0.

It is necessary to adapt locally the shape parameter
of the multiquadric function, after the ANR scheme is
applied to the current numerical solution at time
" =t"" AL

In particular these values are selected as

¢ =|x,.+1 X4 |
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as we increase locally the number of nodes the shape
parameter goes to zero. This simple function permit us
to reduce locally the shape parameter in the regions
were more accuracy is required, which correspond to
regions with high gradient.

With the ANR scheme for time dependent problems
depicted previously, now we can numerically approxi-
mate the solution of the analyzed advection-diffusion
problem with a high Péclet number; Pe=1000, given by
the values $=0.0001 and u=-0.1. For this purpose, the
following parameters where selected: 6,=0.01,
0,=0.0005, At=0.01 and tmax=1, with a uniform ini-
tial node distribution N=601.

160
—+— Pe= 1000 = 00001 p=-01
140
120

100H]

80

ult)

60~

40

201

Figure 4. Numerical solution of convection-diffusion
problem with adaptive node refinement at time tmax=1

Figure 4 shows the reconstruction of the numerical
approximation with ANR scheme. It can be observed
from this picture, that the zone of high gradient is well
captured, the final number of nodes are N=248, with
RMS=1.792e-002 and

max|u(x,t . )—u(x,t . )]|=5.329-002.

From the 50 times that we run the ANR scheme,
only 21 times was necessary to refine/remove nodes. As
the figure shows, the nodes are able to track the region
with high gradient quite efficiently. Observe that near
to the center of the graph (x=3) we require a less den-
sity of nodes and near to the boundaries the node den-
sity increases. This gradual diminution of nodes corre-
sponds to the imposed restriction 2:1 in the level of
refinement.

Moreover, it was observed that the spectral conver-
gence rate error of the implicit scheme is related to the

time step At. When increasing At the approximation er-
ror is increased but we still obtain the spectral conver-
gence. The above behavior is displayed in figure 5. In
this figure it is depicted the error for different time
steps. The following parameters were used, N=50,
B=0.2, n=1 and we display the graph in semilog scale.

The relation between the ¢ and Ar parameters is
shown in table 2. It can be observe that the value of ¢
becomes smaller when At is increased.

o at=02 i
| == at=041
|- at=004 [
—= at=001 |[]

1o -5~ at=0.001 ||

L I I I
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 5. Convergence for fixed p=0.2 and p=1 with diffe-
rent time steps at time tmax=1 with implicit multiquadric

Experimental error analysis
for explicit method

In a similar way to the numerical experiments realized
at the beginning of the previous section, now our goal
is to find out if the explicit method with multiquadric
kernel has an exponential convergence rate. In addi-
tion, we explore the influence of the shape parameter
by using the /s-refinement scheme.

Table 2. Variation of ¢ for different time steps,
for fixed B=0.2, w=1 at time tmax=1

At 0.001 0.010 0.040 0.100 0.200

4 0.4800 0.134 0.071 0.048 0.032

We shall hold fixed the advection velocity p, and we
vary the diffusion coefficient f In this way it is possible
to reproduce alike numerical experiments than those
obtained with IMQ in the beginning of the previous
section. We use a small time step Ar =0.001.
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Figure 6 display the numerical results obtained for

five test cases. To facilitate data interpretation, we em-
ploy a semilog scale to display them. The five analyzed
cases are the following: a) $=0.1, u=0.1 with ¢=1.3, b)

p

=0.02, p=0.1 with c=12, ¢) p=0.01, u=0.1 with

c=1.1,d) B=0.005, u=0.1 with c=1.2 and e) B=0.003,
u=0.1 with c=1.2. We can observe that the RMS de-
crease in an exponential rate as we increase the nodes
numbers.

be

w=01 A
u=0.1 |4
u=0.1 [1

—%— Pe=1
—4 Pe=5
= Pe=10
g —o— Pe=20
Pe=30

(=0.1
p=0.02
(=0.01

p=0.005 p=0.1 [|
=0.0033 ;=01 [1

log,q RMS

I L I L I
10 15 20 25 30 35 40 45 50

Number of nodes

Figure 6. Exponential convergence for 5 test cases with
explicit multiquadric, at time tmax=1

As we increase the Péclet number; see figure 6 from
low to top, the slopes of the straight lines decreases.

For low Péclet numbers we observed a high accuracy in

th

e numerical solution, which correspond to the pre-

dominant parabolic case. We recall that the implicit
method has the above behavior.

ab

Note that the time step At for the EMQ is consider-
le smaller than the corresponding At for the IMQ.

Thus in this last case we have a reduction of the time
processing.

Based on the results obtained for the unsymmetric

collocation method for a time dependent convec-
tion-diffusion problem, we can conclude that both
schemes, IMQ and EMQ, have a spectral convergence
rate. The accuracy of the numerical solution is deter-
mined by the coefficients, B (diffusive) and p (convec-
tive) of the PDE.

pa

In figure 7 we show the effect of varying the shape
rameter by simultaneously performing an /A-refine-

ment. The x-axis represents the nodes number and the
y-axis shows the RMS. The ¢-values belongs to the set

{0
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1,02,...,0.4}.
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As we can see from figure 7, for all the c-values cho-
sen it was obtained a straight line in the semilog scale,
indicating a spectral convergence rate. It should be
noted, that for the case of ¢<=1.4 we only can reach
N=40 since the matrix becomes ill-conditioned. A sim-
ilar result it was obtained with the implicit method.

We want to remark that the variation of the time
step , shown in figure 5, for the implicit method, pro-
duces a similar effect than the one obtained for the vari-
ation of the shape parameter in the former section, see
figure 7.

109, RMS

c=14

10 15 20 25 30 3B 40 45 50

Number of nodes

Figure 7. Variation of the shape parameter
with B=0.1, n=0.2, at time tmax="1

Behavior of the shape parameter with
respect to diffusive coefficient

Our goal now is to find the relation between the shape
parameter c and the diffusion coefficient . The numer-
ical experiment was done with N=>50, u=0.5, and 3 be-
longing to {0.1, 0.2,...,1}. For each B, the best value of ¢
is determined by means of (10). The initial value of ¢ is
zero and it is augmented with increments of 0.001.

It was observed that the shape parameter decreases
monotonically from ¢=1.2 to 0.72 for 0.3 < B < 1; as
shown in figure 8. When B<0.3, the shape parameter
has a small increment. From figure 8, we can observe
that as we decrease the diffusive coefficient  the Péclet
number increases.

We note that in this numerical experiment, we hold
fixed the parameters N, p and tmax, and that the only
variable parameter is 3, which in fact characterizes the
PDE structure. Therefore, it can be conclude that the
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determination of the shape parameter is related to the
structure of the time dependent advection-diffusion
partial differential equation.

Shape parameter

07 L L L

L L L
0.1 02 03 0.4 05 06 o7 08 0.9 1
Diffusion parameter

Figure 8. Variation of the shape parameter with
respect B, fixed n=0.5

Conclusions

In this article we investigated the numerical perfor-
mance of multiquadric collocation methods for a time
dependent convection diffusion problem in one dimen-
sion. For both implicit and explicit collocation tech-
niques, we found that for moderate Péclet numbers an
exponential rate of convergence is attained. For the ex-
plicit technique the time step is restricted by a CFL con-
dition, implying that in order to obtain the same RMS
for both schemes, the time step for the explicit method
should be one order of magnitude smaller.

We numerically found, that as we increase the
Péclet number, for both methods, the slopes of the
straight lines in semilog scale which corresponds to the
exponential convergence rate are reduced. These results
were obtained for /-refinement techniques. We also
shown, that exponential rate of convergence is also sat-
isfied for a c-refinement scheme. Moreover, we also nu-
merically found that the optimal value of the shape pa-
rameter ¢, decreases monotonically as the Péclet num-
ber is increased. This result is a first step towards to de-
termine in an easier way the range of acceptable values
of ¢ for which spectral convergence can be attained. We
stress that within the region where the solution pres-
ents a sharp gradient, an /-local refinement was used in
order to reduce numerical oscillations. This suggest
that in order to handle strongly convective dominated

problems by means of multiquadric collocation meth-
ods, both a an /-¢ refinement and a domain decomposi-
tion methods should be used. Recent results in this last
direction are in progress and will be published
elsewhere.
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