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Abstract

Underground cable electrical parameters ZY as well as their modal propagation 
characteristics are highly frequency dependent which in certain cases turns its 
analysis difficult. To perform electromagnetic transient studies of cables the cal-
culation of electrical parameters is essential to obtain the waves propagation so-
lution through the multiconductor system. At the same time this requires to 
solve the inverse Laplace transform on a numerical form. Although the analytic 
Laplace transform has an indisputable accuracy, the application of its numerical 
version up-to-date has not been completely accepted. A complete methodology 
is developed in this work to guide analyst engineers or graduate students in the 
calculation of electromagnetic transients of underground cable systems. Finally, 
to help the validation of the numerical inverse Laplace transform a scaled proto-
type experiment is performed in the laboratory in which a transient step-respon-
se at the remote end of an energized conductor is measured.

Resumen 

Los parámetros eléctricos ZY de cables subterráneos y sus características de propagación 
modal son altamente dependientes de la frecuencia lo que en ciertos casos dificulta su 
análisis. Al realizar estudios de transitorios electromagnéticos en cables el cálculo de 
parámetros es primordial para obtener la solución de la propagación de ondas a través del 
sistema multiconductor. Esto a su vez requiere resolver la transformada inversa de La-
place en forma numérica. Aunque la transformada analítica de Laplace tiene una indis-
cutible precisión, la aplicación de su versión numérica no ha sido, hasta la fecha, 
totalmente aceptada. En este trabajo se desarrolla un metodología completa para guiar al 
ingeniero analista o estudiantes de posgrado al cálculo de transitorios electromagnéticos 
en sistemas de cables subterráneos. Finalmente, para ayudar a validar la transformada 
numérica inversa de Laplace se desarrolla en el laboratorio un experimento escalado pro-
totipo, en el cual se mide la respuesta transitoria a un escalón de voltaje en el extremo 
receptor de un cable energizado.
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Introduction

An accurate calculation of electromagnetic (EM) tran-
sients on buried cable systems may take into account 
the Skin Effect in the ground and cable conductors, 
while relaxation effects on cable insulation layers 
(Wedepohl and Wilcox, 1973; Dommel, 1986; Marti, 
1982; Marti, 1988; Uribe et al., 2002; Schellkunoff, 1934; 
Pollaczek, 1926; Uribe et al., 2004; Semlyen, 1985; Saad 
et al., 1996; Wedepohl, 1983). Consequently, the modal 
propagation functions of the cable system are highly 
influenced by the inductive loops formed between the 
power cables through the ground (Wedepohl and Wil-
cox, 1973). Thus, due to electromagnetic inductions 
phenomenon, the ground model is evaluated in this pa-
per by means of two approaches for a qualitative com-
parison: the numerical solution of the exact Pollaczek’s 
integral and using the classical approximate formulas 
previously issued by Wedepohl, Ametani and Semlyen 
(Wedepohl and Wilcox, 1973; Dommel, 1986; Semlyen, 
1985; Saad et al., 1996).

A benchmark model for calculating the voltage 
transient step-responses at the remote-end of a buried 
cable system is proposed in this paper (Wedepohl and 
Wilcox, 1973; Dommel, 1986). The transient step-res-
ponse is synthesized in this paper through the Numeri-
cal Laplace Transform (NLT) (Uribe et al., 2002; 
Wedepohl, 1983).

Finally, the calculated responses are qualitative, va-
lidated here through a laboratory mesurement perfor-
med on a scaled prototype experiment.

A Benchmark case for the Electromagnetic 
Transient Analysis of Underground Cables

The voltage and current wave propagation in under-
ground cable transmission systems is described by 
(Wedepohl and Wilcox, 1973; Dommel, 1986; Marti, 
1982; Marti, 1988; Uribe et al., 2002):

		 (1a)

			 (1b)

where Z and Y are the series-impedance and the shunt-
admittance matrices both in per unit length, respecti-
vely. The solution of (1a) and (1b) is (Wedepohl and 
Wilcox, 1973; Dommel, 1986; Marti, 1982; Marti, 1988; 
Uribe et al., 2002; Schellkunoff, 1934):

		  (2a)

			   (2b)

where

		  (2c)

			   (2d)

		  (2e)

C1 and C2 are the integration constant vectors determi-
ned by the boundary conditions, H± is the transmission 
system propagation function, YC and ZC are the charac-
teristic admittance and impedance matrices, respecti-
vely (Uribe et al., 2002).

An underground cable transmission system of leng-
th, l, as the one shown in Figure 1, can be represented 
by a two port network. A nodal admittance representa-
tion, relates the voltage and current responses from the 
sending end at z = 0 to the remote end at z = l (Wedepo-
hl and Wilcox, 1973; Dommel, 1986; Marti, 1982; Marti, 
1988; Uribe et al., 2002; Schellkunoff, 1934):

















=








)(V
)(V

AB
BA

)(I
)(I 00

s
s

s
s

ll

(3a)

and

( )l⋅⋅= YZcoth  Y  A C (3b)

( )l⋅⋅= YZcsch  Y-  B C (3c)

where V0(s) and I0(s) are the voltage and current vectors 
at the sending-end of the line z = 0. Vl(s) and Il(s) are 
vectors of voltages and currents at remote-end of the 
transmission line or, in this case, cable system z = l.

Accurate calculation of ZY

The flat buried cable system shown in Figure 1a formed 
three coupled loops between cables through the 
ground. In addition, each cable (as shown in Figure 1b) 
formed internal and external loops between the nucleus 
and the sheath, respectively. The internal loop is due to 
the impedances of the nucleus, EP insulation and the 
internal sheath, while the external loop if due to the im-
pedances of the external sheath, the PVC jacket and the 
ground (Wedepohl and Wilcox, 1973).

2

2

d =
dz

V ZY V

2

2

d =
dz

I YZ I

         c 1 c 2( ) ω ω   ω ω  zV Z H C Z H C

( ) ( ) ( ) ( ) ( )w w w wC - 1 C + 2I z = Y H  C - Y H  C

  exp l    H ω ( Z Y )  

   1
CY ω Z Z Y

     
1

C CZ ω Y ω Z Y

DOI: https://doi.org/10.1016/S1405-7743(14)70655-9

https://doi.org/10.1016/S1405-7743


577

Uribe-Campos Felipe Alejandro

Ingeniería Investigación y Tecnología, volumen XV (número 4), octubre-diciembre 2014: 575-584 ISSN 2594-0732 FI-UNAM

A well known expression for calculating the nucleus 
impedance of a cylindrical cable conductor is (Wedepo-
hl and Wilcox, 1973):

		 (4a)

Where I0 and I1 are the zero and first order modified 
Bessel functions, p is the skin-effect layer thickness and 
the other variables are defined at the nomenclature.

The insulation impedances between two contiguous 
cylindrical cable conductors with radii rext and rint as 
shown in Figure 1b are given by (Wedepohl and Wil-
cox, 1973):

		  (4b)

The internal, external and mutual impedances of the 
tubular sheath conductor are given by the Schellkunoff 
theory for cylindrical formulae (Schellkunoff, 1934):

(4c)

   (4d)

		 (4e)

where Vint  =  rs-i / p, Vext  =  rs-e / p and the Wronskian is  
W = K1(Vint)×I1(Vext) – K1(Vext) I1(Vint).

The ground return impedances ZG(w) are calculated 
in this paper through two different approaches for a 
qualitative comparison purpose.

The first approach is obtained solving the Pollaczek’s 
integral numerically and the second is obtained using 
classical closed-form approximations (Dommel, 1986; 
Uribe et al., 2004).

First, the Pollaczek’s integral is solved with the effi-
cient, accurate and reliable algorithmic strategy propo-
sed in Uribe et al. (2004). For comparison, the direct 
numerical integration is implemented here by using the 
adaptive Gauss-Lobatto quadrature routine, quadl, 
available from Matlab v7 (Gander and Gautschi, 2000).

Then the closed-form solutions previously issued 
by Wedepohl, Ametani and Semlyen are also imple-
mented in this paper to verify their application accura-
cy ranges (Wedepohl and Wilcox, 1973; Dommel, 1986).

On assuming a Quasi-TEMZ propagation mode, the 
self and mutual ground-return impedance ZG(w) of the 
cable system are given by (Wedepohl and Wilcox, 1973; 
Pollaczek, 1926; Uribe, 2004):

0
0 0( ) [ ( / ) ( / ) ]

2G
jZ K d p K D p Jwmw

π
= − +  (5a)

and

 (5b)

where J is the Pollaczek’s integral, β is the dummy va-
riable and the other variables are listed in the nomen-
clature. The combination of regular and irregular 
oscillations due to the complex exponential factors in 
(5b) provokes convergence problems when applying 
generic quadrature routines at certain physical variable 
application ranges (Uribe et al., 2004).

a)	            b)

Figure 1.  Underground cable transmission system reported in Wedepohl and Wilcox (1973), a) cable system layout, 
b) cable physical dimensions and material properties
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On introducing in (5b) the variable change b = u/|p| 
and the following defined dimensionless parameters, 
we obtain

p
h2

=ξ  and 
h

x
2

=η (5c,d)

and after some algebraic manipulations, we have
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where

( ) 2142 ++= uuuF (6b)

and

( ) 2142 ++−= uuuG (6c)

Basically, the algorithmic strategy proposed in Uribe et 
al. (2004) is based on two aspects; a pure damping expo-
nential truncation criterion and on a zero crossings 
identification procedure for harmonic oscillatory 
functions in (6a).

To implement the direct numerical integration of 
Pollaczek’s integral (5b) may be transformed into:
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The truncation criterion for (7a) is based on the proper-
ties of the damping exponential factor in (6a) when 
F(u) → u. Thus, for the second factor in (6a) the entire 
range of u can be split-up into:
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where erel is the relative error defined in this paper as:

		   (7c)

with a truncation limit

( )6
max log u ξ ξ−= − 		 (7d)

After Pollaczek’s mathematical statement in 1926, elec-
trical engineering researchers have looked forward for 
many years of closed-form approximations to ZG(ω) 
(Wedepohl and Wilcox, 1973; Pollaczek, 1926). Some of 

the most often used in EMTP applications are the ones 
proposed by Wedepohl, Ametani and Semlyen.

Wedepohl and Wilcox (1993) presented a formula 
for calculating the self and mutual ZG(ω) valid for ca-
bles buried at usual depths around h ≤ 1m, d ≤ 1m and 
|x/p| < 1/4:

 	 (8a)

where g is the Euler constant.
Another important approximation is the one imple-

mented in the cable constants routine of the EMTP pro-
gram (Dommel, 1986). Basically here, Ametani replaces 
Pollaczek integral by the one of Carson, assuming in 
(5b) the following consideration (Dommel, 1986):

2 21h p hb b⋅ + ≅ ⋅ 			   (8b)

Around 1982, Wedepohl conjectured a formula for cal-
culating the self ZG of a buried conductor. The formula 
is based on the complex depth penetration of the elec-
tromagnetic fields in the ground. Subsequently, in 1985 
Semlyen reported the following formula (Semlyen, 
1985):

	 (8c)

where rPVC is the external cable radius (Figure 1b), over 
the outer insulation PVC (Polyvinyl chloride) jacket.

In addition, Saad, Gaba and Giroux published a 
very interesting closed-form approximation to Pollac-
zek integral based in the complex ground return plane 
and in the Cauchy’s integral theorem solution (Saad et 
al., 1996). The derivation process of this formula is very 
similar to the early one employed to obtain a simplified 
model of the Carson’s integral for calculating ZG of ae-
rial lines (Dommel, 1986):

	 (8d)

The self and mutual ground impedances ZG for each of 
the current loops formed between the buried cable sys-
tem in Figure 1, are calculated in this paper by solving 
numerical Pollaczek integral and by using the above 
closed-form approximations.
It can be seen in Figures 2 and 3, that in both impedance 
calculations the closed-form approximations as well as the direct 
numerical quadrature of Gauss/Lobatto are in good agreement 
with the algorithmic solution 	

  6
max 10exp   urel

  0

PVC

log 1
2G

jωμ pZ ω
π r

 
   

 
 

   
 

  










 h/p

x/p
pdK

j
ZG exp

4
2

2 20
0






0 4( ) log( / 2 ) 0.5
2 3
wmw g

π
 

= ⋅ − + − 
 

G
j hZ d p

p

DOI: https://doi.org/10.1016/S1405-7743(14)70655-9

https://doi.org/10.1016/S1405-7743


579

Uribe-Campos Felipe Alejandro

Ingeniería Investigación y Tecnología, volumen XV (número 4), octubre-diciembre 2014: 575-584 ISSN 2594-0732 FI-UNAM

a)  

b)

Figure 2.  Self ZG(w) for each cable in Figure 1a calculated with 
Pollaczek (5a) and with approximated formulas. The relative 
errors for these approximations are also shown in the small 
square of each figure, a) resistances, b) inductances

developed by Uribe et al. (2004) used in this paper to 
establish a benchmark for calculating ZG(w).

However, there are practical engineering cases 
when the distance between cables x (Figure 1) is consi-
derably long, or when the cable trench is surrounded 
by soil with a very low resistivity (Dommel, 1986).

Appendix I shows the calculated mutual external 
loop of ZG(w) for the buried cable transmission system 
shown in Figure 1, but with a separation distance bet-
ween cables of x  =  30  m and with an homogeneous 
ground conductivity of s = 1 S/m.

The dispersive dielectric effects of each cable insula-
tion layer (better known as relaxation effects), are intro-
duced into the electromagnetic transient analysis by the 
shunt admittance matrix, based in the following rela-
tion (Dommel, 1986):

(9a)

a)

b)

Figure 3.  Mutual ZG(w) between cables shown in Figure 1a 
calculated with Pollaczek (5a) and approximated approaches. 
Relative error details are also shown in the upper corner of each 
figure, a) resistances, b) inductances

 

where G(ω) is the shunt conductance which represents 
the Ohmic losses and C(ω) is the shunt capacitance 
which represents displacement current flowing bet-
ween conductors through the specific dielectric. Assu-
ming a concentric cable geometry, the capacitances are 
given by (Dommel, 1986):

		 (9b)

where er(w) = er’(w) – j ⋅ er´´(w) is the frequency depen-
dent complex permittivity, which has a vector relation 

( ) ( )
( )

0

ext int

2
ln

rC
r r

πe e w
w =

/

( ) ( ) ( )Y G j Cw w w w= + ⋅

DOI: https://doi.org/10.1016/S1405-7743(14)70655-9

https://doi.org/10.1016/S1405-7743


Laplace Synthesis Validation through Measurements on Underground Transmission Cables

Ingeniería Investigación y Tecnología, volumen XV (número 4), octubre-diciembre 2014: 575-584 ISSN 2594-0732 FI-UNAM580

to the loss tangent loss factor through the electrical con-
ductances as follows (Dommel, 1986):

G (w) = w C (w) ⋅ tan d	 (9c)

where tan d is the insulation loss factor. Another option 
to evaluate the complex permittivity is to synthesize er 
through a multi-term order Debye or Cole-Coles model 
(Dommel, 1986):

1
( )

1

N
i

r
i ij

ee w e
w t∞

=

D
= +

+ ⋅∑ (9d)

where e is the very high frequency permittivity value, 
N is the number of relaxation terms, ti, used for the fit-
ting, De = es – e  and es is the static frequency permitti-
vity value.

Modal propagation properties

The characteristics of wave attenuation and velocities 
are thus explained by The Theory of Natural Modes of 
Propagation by Wedepohl (Wedepohl and Wilcox, 
1973; Dommel, 1986). The voltage and current wave 
propagation modes of the system are characterized by 
H±(w) and ZC(w) in equiations (2c) and (2e), respecti-
vely.

The propagation modes of the buried cable system 
in Figure 1 resemble approximations of the aerial mo-
des of Clarke (Wedepohl and Wilcox, 1973; Dommel, 
1986), where two types of modes can be identified. The 
metallic conductor (two differential modes) and the 
ground return. In addition, the presence of the conduc-
tor sheaths add even more combinations of these 
mainly two basic types of propagation modes.

Figure 4 shows the decreasing monotonic behavior 
of |ZC|and |e±√(ZY)⋅l| which have been evaluated with 
two different ZG(w) models (Pollaczek and Wedepohl). 
The mode switching effect on H±(w) has been removed 
by using the alternate method proposed by Wedepohl 
in (Wedepohl et al., 1996) for calculating transformation 
matrices tracking the order of eigenvectors and eigen-
values with their previous one corresponding frequen-
cy. The ZC of the system directly depends on the relation 
between frequency dispersion conductor effects and on 
the insulation relaxation effects of the cable.

In Figure 4a the influence of the ground-modes is 
noticeably greater for the metallic conductor loops ac-
cording to the high inductive ZG(w) at the low frequen-
cy range as seen in Figures 2b and 3b. It can be noticed 
from Figure 4b, that the propagation function depends  

on the product of the cable parameters ZY. Where the 
influence of the high inductive ZG(w) is inversely rela-
ted to the cable system modes. This can be corroborated 
from the Wedepohl model for ZG(w) shown in Figures 
2b and 3b, both according behavior in Figure 4b.

Frequency response

The accurate calculation of ZY has been performed in 
the evaluation of parameter matrices A and B in (Equa-
tions 3a and 3b) with the Pollaczek and Wedepohl 
ground-return models. The nodal representation in (3a) 
is shown in Figure 5 where the cable system length 
l = 40 km. The open-circuit voltage and short-circuit cu-
rrent frequency responses are shown in Figure 6.

The network elements connected to the transmis-
sion cable system are represented by generalized ad-

a)

b)

Figure 4.  Modal propagation functions calculated with Pollaczek 
and Wedepohl ZG(w) models for the benchmark cable system 
shown in Figure 1, a) magnitude of ZC, b) magnitude of exp 
(±√(ZY) ⋅ l)
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mittances in the sending end with Ys and in the remote 
end with YR.

The voltage at the remote end, Vl, and the injected 
current at the sending end, Is, are related to the boun-
dary conditions as shown in Figure 5 (Uribe et al., 2002):

( ) sl IsH=V (10a)

where
11 } )()({)( −− ++−= R

 
S YA BYABsH             (10b)

H(s) is the transfer function of the network system. 
Thus, the open-circuit voltage responses for the cable 
system in Figure 5 are calculated in the following paper 
section.

Numerical Laplace Inversion

The voltage waveform response at the remote end of 
the cable system in Figure 5 is synthesized in this paper 
through the inverse NLT (Wedepohl and Wilcox, 1973; 
Wedepohl, 1983):

		  (11a)

The discretization of (11a) leads to the numerical solu-
tion of Vz(t) at z = l where T = mDt and W = nDs as follows 
(Uribe et al., 2002; Wedepohl, 1983):

(11b)

 

where N is the number of time samples and sn is the 
data window which is used for attenuating Gibbs phe-
nomena errors (Wedepohl, 1983). The following Vonn 
Hann window is applied (Equation 11c).

a)

b)

Figure 6.  Frequency response for the two port network 
representation in Figure 5, a) open-circuit voltage response, 
b) short-circuit current response

		  (11c)

where W is the frequency truncated range. The frequen-
cy domain discretization of V

l

(s) provokes frequency 
leaking in the time domain. The damping Laplace fac-
tor, c, is thus used to quench frequency leaking errors. 
However, since Gibbs error is not completely elimina-
ted by data windows, it would be amplified by the un-
damping function, exp(cmDt), in (11b). Thus, the 
selection of a value for c is a trade off. The following 
criterion has been proposed by Wedepohl (1983):

			  (11d)

where T = NDt is the observation time for the transient 
and e is the error level whose lower bound is determi-
ned by N. The discretization frequency step Dw at (11b) 
is implicitly considered as follows:

Nt πw 2=D⋅D (11e)
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Figure 5.  Two port network nodal representation of an 
underground cable transmission system connected with YS and 
YR at its ends
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where NDw/2 is the truncation frequency for the discre-
te representation of V

l

(s). Consider now from (11c):

wπ D=D Nt2 			 (11f)

The left-hand side of (11f) is the sampling frequency 
while the right hand side is twice the truncation fre-
quency. In addition (11f) agrees with the Nyquist sam-
pling criterion.

Scaled prototype laboratory measurements

An initial scaled experimental setup has been imple-
mented in this paper to perform a qualitative compa-
rison between the obtained voltage measurements in 
the labo-ratory and the NLT methodology. A thin wire 
of 1.302mm2 (16 AWG) for 600V with r  =  1.25mm, 
h = 0.1m, rCU = 1.72  10–4 W ⋅ m, rg = 1000W ⋅ m (it is 
assumed that the laboratory has a solid rocky soil 
without moisture), and a cable length of l  = 35m has 
been used for the scaled test.

A voltage source of 5V is switched at the sending 
end of the cable conductor as is shown in channel-1 of 
the oscilloscope obtained in Figure 7a. The transient 
step voltage response is measured with a TDS2024 osci-
lloscope at the remote end of the cable as is shown in 
channel-2 in the same figure.

In Figure 7b, the comparison between both measu-
red voltages and the synthesized Laplace voltage res-
ponse is illustrated having a good agreement. However, 
a small attenuation between both measured and synthe-
sized voltage responses can be noticed in this figure. It 
is probably that the attenuation difference between 
both curves is due to a mistaken measurement taken 
from the ground resistivity of the laboratory.

Conclusions

An accurate methodology for calculating ZY parame-
ters for buried cable systems is developed in this paper. 
Ground-return impedances have been calculated here 
by solving the Pollaczek integral through direct nume-
rical integration and with an algorithmic strategy pro-
posed by the author.

The influence of approximate ground-return mo-
dels on modal propagation functions is also discussed 
in this paper. The voltage transient step response on a 
single 16AWG prototype cable is measured on a scaled 
setup experiment. The voltage transient step response 
on the cable has been also synthesized through the 
Numerical Laplace Transform.

Both, the measured and the synthesized voltage tran-
sient step-responses are in good agreement. Thus, it is 
possible to suggest a qualitative validation for the NLT 
technique in power transient analysis applications.

a)	         b)

Figure 7.  Experimental measurements, a) energization step-voltage at the sending end and its transient response at the remote end of 
the cable, b) measured and synthesized comparison (through the NLT) voltage transient step responses at the cable remote end
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Nomenclature

w = angular frequency (in rad/s)
m0 = magnetic permeability of vacuum and air (H/m)
s = soil conductivity (S·m)
rn = conductor resistivity for material “n” (Ω·m)
εn = dimension-less material “n” relative permittivity

In( ) = modified Bessel function of first class and “n” order

Kn( ) = modified Bessel function of second class and “n” 
order

d = distance between cables, or the radius for the self 
impedance case (m)

D = distance between one cable and the image of 
the other, or twice the cable depth for the self 
impedance case (m)

p = complex depth of the Skin Effect layer thickness 
p=1/√(jwm0s)

h = cable depth, or h=(h1+h2)/2 for the mutual impedance 
case (m)

x = horizontal distance between cables, or the cable 
radius for the self impedance case (m)

rn = underground cable core radius (m)
z = sending end or remote end of the transmission 

system (m)
l = transmission system length (m)
s = Laplace complex variable

Appendix 

Figure A1 shows mutual ZG(w) calculated with Pollac-
zek algorithm (Uribe et al., 2004), Gauss/Lobatto qua-
drature routine (Gander and Gautschi, 2000), Ametani 
method (Dommel, 1986) and complex depth formula 
(Saad, Gaba and Giroux, 1996) for the buried cable sys-
tem shown in Figure 1, with x = 30 m and s = 1 S/m.

It can be noticed from this figure that closed-form 
approximations behaves well at certain ranges, while 

the same situation occurs with direct numerical inte-
gration which oscillates at certain h, r, x, s and w values. 
Thus, a general assessment of approximate methods of 
ZG(w) is still missing.
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