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Abstract 

In this work, artificial neural networks (ANNs) are used to characterize the 
convective heat transfer rate that occurs during the evaporation of a refrige-
rant flowing inside tubes of very small diameter. An experimental setup ba-
sed on an inverse Rankine refrigeration cycle is used to obtain the heat 
transfer data in an R-134a refrigerant mini-tube evaporator set operated un-
der constant heat flux conditions. A considerable amount of data was acqui-
red to map the thermal performance of the evaporative process under 
analysis, 75% of which were used for training the ANN and 25% were reser-
ved for prediction purposes. Several neural network configurations were 
trained and the most accurate was selected to predict the thermal behavior. 
The results obtained in this investigation reveal the convenience of using 
ANNs as an accurate predictive tool for determination of convective heat 
transfer rates inside mini-tube evaporators.
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Introduction

Recent developments of high performance electronic 
equipment have led to a general reduction of spacing 
and increase in power. This fact has created a need for 
efficient heat dissipation. In response to this demand, 
miniature-size compact heat exchangers with capacity 
to operate as efficient heat sinks have been recently de-
veloped. The reduction of channel size is now a reality 
and mini-tubes with hydraulic diameters from 200 µm 
to 3 mm are commonly used. The problem, however, is 
that the heat transfer and pressure drop in this kind of 
systems may be significantly different from what has 
been reported in conventional size evaporators, and 
there is a lack of reliable information about the thermal 
performance of these devices. 

Much of the progress of heat transfer has been dri-
ven by the necessity to predict the performance of a 
thermal system, which results from applications of fun-
damental laws (mass, momentum, and energy conser-
vation) for basic problems, supplemented with em- 
pirical correlations for more complex cases (complexi-
ties stemming from system geometry, flow conditions 
and appearance of simultaneous heat transfer mecha-
nisms). Unfortunately, there are critical applications 
related to energy efficiency, environmental impact, op-
timal system design and control, where traditional te-
chniques fail to provide an adequate prediction and 
more advanced prediction methods are required. While 
the thermal sciences must continue to gradually increa-
se knowledge and insight of fundamental phenomena, 
there are some new technologies, such as artificial neu-
ral networks (ANNs) that can be used as application 
tools to supplement such understanding. This is parti-
cularly true in the case of complex flow situations occu-

rring in novel applications, such as the cooling of 
electronic devices with miniature size evaporators. 

Heat transfer prediction of condensation and eva-
poration processes in refrigeration and air conditioning 
units is a complex task when compared to the predic-
tion of single phase heat transfer. Traditional power-
law correlations have proved to be inaccurate for this 
kind of processes, even though there is a need of good 
predictions in these applications. For instance, using 
their correlation for forced convective boiling, Gungor 
and Winterton (1986) obtained errors of 21.4% for satu-
rated boiling and 25% for sub-cooled boiling with res-
pect to their own measurements. Years later, it was 
shown that when experimental data from other authors 
are used, the errors from this and other correlations can 
be as large as 50%.The process of phase change in pipes 
undergoes a series of flow regimes, which go from sin-
gle phase flow, onset of bubble formation, annular flow 
boiling, film boiling, mist flow and superheated vapor 
flow, depending on mass flow rate, degree of superhea-
ting, pressure, tube diameter, orientation and vapor 
quality. All these phenomena occur over a short pipe 
length. The inability of power-law correlations to catch 
up with all these phenomena occurring during two 
phase convection lies as the reason for the inaccuracy of 
the predictions.

One of the modern technologies that have been suc-
cessful as an analysis tool is the technique of artificial 
neural networks (ANNs). This technique has been 
applied for pattern recognition, decision making, con-
trol systems, information processing, symbolic mathe-
matics, computer vision and robotics. The use of ANNs 
has been extended to a wide variety of disciplines, 
among which are the thermal sciences, because it allows 
the study of complex thermal systems that otherwise 
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would be impossible to characterize with conventional 
analysis techniques, since they offer an alternative ap-
proach for experimental data compression. ANNs have 
been used for the prediction of heat transfer coefficients 
(Jambunathan et al., 1996), the calculation of Nusselt 
numbers (Thibault and Grandjean, 1991), the predic-
tion of heat transfer in heat exchangers (Díaz et al., 1999; 
Pacheco-Vega et al., 2001a, 2001b), the estimation of 
heat transfer in the transition region of a circular tube 
(Ghajar et al., 2004), to study the thermal performance 
of cooling towers (Islamoglu, 2005), to analyze phase 
change in finned tubes (Ermis et al., 2007), to compute 
friction and heat transfer in helically-finned tubes (Zda-
niuk et al., 2007), to model evaporative air coolers (Ho-
soz et al., 2008), finned-tube condensers (Zhao and 
Zhang, 2010), finned-tube evaporators (Zhao et al., 
2010), and indirect evaporative cooling (Kiran and Raj-
put, 2011). One of the main advantages of ANNs is that 
they do not require a detailed knowledge of the physi-
cal phenomena describing the system under analysis.

The objective of this work is to use ANNs to charac-
terize the convective heat transfer rate occurring during 
the evaporation of a refrigerant flowing inside tubes of 
very small diameter. For this purpose, an experimental 
setup of a mini-tube evaporator with a constant heat 
flux condition is first built and instrumented. Next, the 
experimental apparatus is used to acquire the measure-
ments necessary to map the thermal performance of the 
evaporative process inside a bundle of mini-tubes as 
functions of flow and thermal operating conditions and 
geometrical parameters. Finally, using the experimen-
tal data, several neural network configurations are trai-
ned and the most accurate was selected to predict the 
thermal behavior of the mini-tube evaporator. The re-
sults reveal that ANNs are accurate predictive tool for 
the analysis of complex systems such as mini-tube eva-
porators.

Artificial neural networks

The theory under which ANNs work is based on the 
structure and functionality of biological neural systems, 
where the neuron is the fundamental element. The biolo-
gical neuron, schematically shown in Figure 1, is formed 
by the body of the cell, an axon and a series of dendrites. 
The axon transports the incoming signal from a neuron 
to other neurons, whereas the dendrites provide enough 
surface area to facilitate connectivity with other neurons. 
ANNs have nodes (or artificial neurons), as shown in Fi-
gure 2, whose function is to make mapping operations 
between inputs and outputs. This mapping is usually 
done by means of a sigmoidal function, although other 

functions (e.g.: hyperbolic tangent or Gaussian) have 
also been successfully applied. These artificial neurons 
are connected to others through linkages of the type 
axon-synapsis-dendrite, each associated with a weight. 
As in the case of a biological synapsis, this weight deter-
mines the nature and intensity of the influence of a node 
on another. A weight of large value (either positive or 
negative) corresponds to a large excitation, while a small 
weight corresponds to a negligible one. There exist diffe-
rent neural network configurations, the fully-connected 
being the most common in the analysis of engineering 
problems. This type of ANN, also called multilayered 
perceptron or feed-forward network, is shown schemati-
cally in Figure 3. It has a series of layers, each formed by 
a set of nodes; the first layer is called input layer; the last 
one is the output layer, and the inner layers are known as 
hidden layers. The network configuration shown in the 
figure is referred to as fully-connected since each node of 
a layer is connected to all the nodes of adjacent layers.

To build an artificial neural network model, a trai-
ning process must be carried out first. This process is 
accomplished by adjusting the synaptic weights and 
biases when the different values of input and output 
variables are supplied to the network. The technique 
for training the ANN is that of back propagation, des-
cribed by Rumelhart et al. (1986). After the network 
configuration has been chosen, the first step of the algo-
rithm is to randomly assign initial synaptic weights and 
biases. The second step, known as feed-forward step, 
starts by feeding the data onto the first layer (input la-
yer). The information resulting from the input-output 
sigmoidal mapping at each node of the inner layers is 
then transferred forward until it reaches the nodes of 
the last layer (output layer), where the outputs from the 
network are compared with the experimental data, and 
their differences are used later to adjust the correspon-
ding weights. This step is known as back-propagation. 
In it, the error generated from the feed-forward phase is 
quantified in each layer and each node by means of a 

Dendrites

Nucleus Axon

Figure	1.	Schematic	of	a	biological	neuron
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delta rule and propagated backwards to change the sy-
naptic weights and biases. A feed-forward step fo-
llowed by a back-propagation one comprises a cycle. 
The training process ends when the error in the last cy-
cle decreases below an established threshold value. 

Experimental setup and procedure

Experimental	set	up

An experimental apparatus based on the inverse Ranki-
ne cycle, which includes a test section for evaporation 
of a refrigerant inside a set of mini-tubes, was built and 
instrumented. The test bench is shown schematically in 
Figure 4. It has two fluid circuits: one for the refrigerant 
R-134a and one for cooling water. The refrigerant cir-

cuit incorporates a refrigerant pump (RP), a pre evaporator 
(PE), an evaporator test section (TS), an expansion valve 
(EV), a double pipe condenser (DC) and sub-cooler (SC) -in 
which the refrigerant flows inside the annular section 
while chilled water flows inside the circular pipe- an 
accumulator tank (AT), a flow meter (FM), a dryer filter 
(DF) and several peepholes (PH). This circuit starts in the 
container (CO) and refrigerant flows toward the pump. 
This is a 1/13 HP rotary positive-displacement type 
pump with external gears, magnetic coupling, and pro-
vides volumetric flow rates from 4 to 458 l/h. The pump 
circulates the refrigerant through a Coriolis-type flow 
meter, which measures mass flow rates from 0 to 65 
kg/h, densities from 0.1 to 2.9 g/cm3, and temperatures 
from -50°C to 180°C. After the flow meter the refrige-
rant flows to a pre-evaporator, leaving it at the specific 
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Figure	2.	Typical	structure	of	an	artificial	
neuron

Figure	3.	A	fully-connected	artificial	
neural	network	configuration
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vapor quality required at the entrance of the evaporator 
test section. 

This experimental setup has an electrical resistance 
through which the power is supplied to the system 
that is controlled by means of a variable autotransfor-
mer. Both the pre-evaporator and the test section have 
similar designs (see description below). Once the refri-
gerant is pre-heated, it is circulated through the evapo-
rator test section, where it evaporates and the required 
measurements for the present study are collected. Af-
ter passing an expansion valve, a condenser and a sub-
cooler are used to treat the refrigerant that leaves the 
test section before it returns to the accumulator tank. 
The condenser and the sub-cooler are concentric-tube 
heat exchangers, shown schematically in Figure 5, in 
whose annular sections chilled water is circulated. The 
chiller (CH) has a temperature range from -10 to 40°C, 
and a volumetric flow rate up to 4.2 l/min. A bypass 
circuit is also included in order to adjust the average 
flow rate. The pressure in the test section is measured 
by means of a pressure transducer, which has a range 
from 0 to 1 MPa. The pressure is regulated varying the 
temperature and flow rate of water in the condenser. 

The input and output temperatures are measured with 
J-type insulated thermocouples.

Pre-evaporator	and	evaporator	test	section	design

Figure 6 shows the test section formed by a collinear 
array of 20 adjacent copper tubes, each having a 3.175 
mm outer diameter, 1.75 mm inner diameter and  
1.5 m length. The array of tubes is sandwiched bet-
ween two 90 cm long, 7 cm wide and 4.8 mm thick 
copper plates. Six J-type thermocouples were inserted 
along the collinear array in the gaps formed between 
tubes and the copper plates. In order to reduce the 
contact thermal resistance, the space between the cop-
per tubes and the plates was filled with conducting 
silicon paste. Each copper plate is covered with a 
stainless steel lamina that has 11 cuts, as shown sche-
matically in Figure 7, to form a path for the circula-
tion of an electric current that will generate heat by 
Joule effect (and will apply it to the system), which is 
regulated by adjusting the voltage applied with a 
0-120 V CA variable autotransformer. A thin gypsum
layer is placed as a plank between the copper and

Hot 
water

R-134aT2T3

T4 T5

Figure	4.	Schematic	diagram	of	the	
experimental	equipment

Figure	5.	Schematic	diagram	of	condenser	
and	sub-cooler
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stainless steel plates to avoid electric currents through 
the copper plates and tubes. In order to reduce heat 
losses to the exterior, the outer side of the stainless 
steel plates is covered with two layers of asbestos tis-
sue and a fiberglass layer. 

The information obtained from the experimental 
runs was collected with a data acquisition system that 
includes a National Instruments SC-2345 portable mo-
dular system, a data acquisition card NI DAQCard-
6036E for PCMIA, thermocouple modules NI SCC-TC, 
and a current module NSC-C120. The program Measu-
rement and Automation Explorer is used to obtain data 
and process them in a PC.

Data collection and processing

The refrigerant mass flow rate, the system pressure, the 
applied heat flux generated from the electrical resistan-
ce and the incoming refrigerant vapor quality entering 
the test section were varied during the experiments. 
The refrigerant mass flow rate was varied by adjusting 
the operating conditions of the refrigerant pump and 
the bypass. The system pressure was varied by injection 
of refrigerant into the system. As indicated above, the 
magnitude of heat flux applied was varied by adjusting 
the variable autotransformer position. The vapor quali-
ty of the refrigerant entering the test section was con-
trolled by the amount of heat provided in the pre- 
evaporator.

The following parameters were measured during 
the experimental runs: 

Ts = test  section tube surface temperature 
Tf = average refrigerant temperature during evapora- 

   tion 
Tpre = pre-evaporator refrigerant input temperature
P = system pressure  
  = refrigerant mass flow rate 
V = applied voltage 
I = applied current 

The temperatures Tf and Ts are obtained from direct 
measurements with J-type thermocouples. With these 
measurements it is possible to calculate the experi-
mental inner flow side convective heat transfer coeffi-
cient, U, as

(1)

where q” is the applied heat flux (applied electric power 
per unit surface area), which is a function of the voltage 
and current applied and controlled by the variable au-
totransformer, Ap is the copper plates surface area, and 
At is the external surface area of the tubes.

The vapor quality at the entrance of the test section 
was selected to be 20%; this was achieved by regula-
ting the heat provided to the pre-evaporator, which is 
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Figure	7.	Stainless	steel	lamina	cuts

Figure	6.	Schematic	of	the	test	section
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controlled by the variable autotransformer position. 
The vapor quality at the exit of the test section was 
selected to be 80%; this was also achieved by regula-
ting the heat provided to the evaporator.

The amount of heat needed to achieve a vapor qua-
lity of 20% as entrance condition to the evaporator, ex-
pressed as the product of voltage by current circulated 
through the pre evaporator, is determined by

(2)

where h2  is the enthalpy of refrigerant that is 20% vapor 
at the pressure of the test section, and can be determined 
by h2= hf + x2 hfg ; hf  is the saturated liquid enthalpy of the 
refrigerant at the evaporator pressure, hfg is the latent 

heat of evaporation of the refrigerant at the evaporator 
pressure and x2 is the quality, in this case x2 = 0.2.  

The amount of heat needed to achieve a vapor qua-
lity of 80% as exit condition of the evaporator, expres-
sed as the product of voltage by current circulated 
through the evaporator, is determined by

(3)

where h3 is the enthalpy of refrigerant that is 80% vapor 
at the pressure of the test section, and can be determined 
by h3 = hf + x3 hf g ; hf is the saturated liquid enthalpy of the 
refrigerant at the evaporator pressure, hf g is the latent 
heat of evaporation of the refrigerant at the evaporator 
pressure and x3. is the quality, in this case x3 = 0.8.

1 1 2 1( )V I m h h= −

2 2 3 2" ( )pV I q A m h h= = −

Table	1.	Artificial	neural	network	configurations	analyzed

Inner layers Configuration R σ Maximum error (%)

1 3-3-1 1.0001 7.15E-4 4.04

1 3-5-1 1.0000 6.48E-4 3.73

1 3-7-1 1.0001 7.00E-4 5.52

1 3-9-1 1.0060 2.36E-3 8.70

1 3-11-1 1.0000 6.00E-3 3.58

1 3-13-1 1.0000 6.89E-4 3.67

2 3-1-1-1 1.0001 6.98E-4 4.51

2 3-3-1-1 1.0000 7.00E-4 3.70

2 3-5-1-1 1.0000 6.83E-4 3.73

2 3-5-3-1 1.0000 2.90E-3 3.80

2 3-5-5-1 0.9970 6.70E-4 3.80

2 3-6-4-1 1.0000 6.25E-4 3.70

3 3-1-1-1-1 1.0001 7.32E-4 4.15

3 3-3-1-1-1 1.0000 6.60E-4 3.75

3 3-5-1-1-1 1.0001 7.14E-4 4.01

3 3-5-3-1-1 1.0000 6.83E-4 3.97

3 3-5-5-1-1 1.0000 6.58E-4 3.97

3 3-5-5-3-1 1.0000 7.01E-4 3.98
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Results and discussion

Three parameters were chosen as relevant input data 
for the characterization of the refrigerant evaporation 
in the mini-pipe heat exchanger described before. The-
se are: saturation temperature during the evaporation 
process (Tsat), refrigerant mass flow rate (    ), and applied 
heat flux (q”). The output obtained from this informa-
tion is the experimental convective heat transfer coeffi-

cient (    ). This combination of parameters is relevant in 
many cases where the surface temperature adapts to 
guarantee a given heat flux under a convective heat 
transfer coefficient condition. The Fortran-77 code used 
for training the artificial neural network model, and for 
its subsequent predictions, is a modified version of that 
developed by Díaz (2000) and Pacheco-Vega (2002). A 
feature of this new version is that it enables the automa-
tic selection of the most appropriate error function 

m

e
rU

a)

b)

Figure	8.	Evolution	of	a)	standard	
deviation	and	b)	maximum	error	as	a	
function	of	the	training	cycle	for	the	
neural	network	configuration	3-13-1
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(from a pre-defined set), during the training process, 
for the problem at hand.
A number of 177 measurements of Tsat ,      and q” were 
obtained to calculate       , and 18 different artificial neu-
ral network configurations were analyzed and compa-
red to determine the one that provided best predictions 
of the thermal behavior for the evaporation process. 
Table 1 shows all the network configurations tested. 
The number of inner layers, which determine the ANN 
structure, was set as 1, 2 or 3, with a different number of 
nodes per layer. For each one of the 18 configurations, 
the mean value of the ratio between the experimental 
and predicted transfer coefficients, R, the maximum 
error and the standard deviation, σ, were calculated 
during the training process until the maximum number 
of training cycles was reached. The calculations for R 
and σ were carried out with the following equations

(4)

(5)

where         is the refrigerant side convective heat trans-
fer coefficient determined from the experimental data 
and        is the convective heat transfer coefficient predic-
ted by the artificial neural network. From the 177 expe-
rimental data collected, 133 were used to train each 
neural network configuration, whereas the remaining 
44 datasets were reserved for testing purposes; i.e., for 
comparison between the experiments and the ANN 
predictions. Table 1 illustrates the final values of R and  
σ for each configuration. It is to be noted that, following 
the investigation of Pacheco-Vega et al. (2001a, 2001b), 
the final neural network model was built with 100% of 
the available experimental data, since it allows for the 
optimum model within the parameter range.

The number of cycles during training was defined 
in terms of the minimum value of the maximum error 
and standard deviation. An example of the behavior 
observed for this error is shown in Figure 8 for the case 
of the neural network 3-13-1. From the observations of 
this and other cases not shown in the paper, where the 
same behavior occurs in all other configurations, it was 
concluded that after 10,000 cycles the reduction of the 
maximum error was negligible, and this number of tra-
ining cycles was taken as the standard throughout this 
investigation. Importantly, depending on the problem 

at hand the training process may be computationally 
expensive but, as pointed out by Pacheco-Vega et al. 
(2001b), once the ANN has been trained, its subsequent 
use for predictions is immediate. For the problem at 
hand, in all cases analyzed the training process took 
less than 5 minutes of CPU-time per ANN model, 
which is an excellent processing time as compared to 
that necessary for the optimization process to find the 
typical correlation constants. From the table it can be 
seen that although the results for the 18 configurations 
are close, the 3-11-1 was the best in terms of the maxi-
mum error, while the 3-6-4-1 proved to be the best in 
terms of σ. Both configurations are close to the “best” 
configuration according to the ad-hoc criterion of He-
cht (1987), which indicates that the configuration 3-7-1, 
shown schematically in Figure 9, should be the best. 
When searching for a more robust model, as mentioned 
before, there are other configurations that are very com-
petitive. Configuration 3-5-3-1, with R=1.0000, σ=2.90E-4 
and maximum error of 3.80, or configuration 3-3-1-1-1, 
with R=1.0000, σ=6.60E-4 and maximum error of 3.75, 
are very good options. 

Figure 10 shows the convective heat transfer coeffi-
cient obtained experimentally,      , versus the prediction 
from the neural network 3-3-1-1-1,     , for each one of 
the 177 experimental data. It can be seen from the figure 
that the experimental and predicted values are very clo-
se to the ideal straight line that describes the perfect 
prediction. It is important to mention that the error in 
the prediction is less than 3.75%, much less than the 
errors encountered in predictions obtained with corre-
lations that use conventional predictive capabilities. It 
is evident that neural networks are an excellent tool for 
prediction of the thermal performance of the evapora-
tion of a refrigerant within a concentric pipe heat ex-
changer. This fact is further exemplified by using the 
Liu and Winterton (1991) correlation, which is one of 
the most accepted for prediction of heat transfer during 
evaporation of a refrigerant inside flat tubes. Using this 
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Figure	9.	A	3-7-1	neural	network	configuration	analyzed
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correlation with their own data, the mean error repor-
ted between the correlation and the data is 30%. In con-
trast, the maximum error in the prediction of heat 
transfer in the present evaporator obtained by the opti-
mal neural network configuration was 3.58% (the mean 
quadratic error was 0.6%) when compared to our expe-
rimental data. Artificial neural networks are a good op-
tion for prediction of heat transfer in evaporators with 
errors of the same order of magnitude as the experi-
mental uncertainty.

Conclusions

The study of the physics involved in convective evapo-
ration has increased its complexity since the appearan-
ce of enhanced surfaces for evaporators and new 
environmentally-friendly refrigerants. This enhanced 
complexity has made it more difficult to develop accu-
rate correlations for the prediction of the thermal per-
formance of evaporators. Reports in the literature 
clearly show that predictions based on models that con-

sider forced convection and flooded evaporation as se-
parate phenomena are severely degraded and new 
alternatives like artificial neural networks (ANNs) are 
necessary. 

We have developed neural network models of a mi-
ni-tube evaporator that may be able to accurately pre-
dict the thermal performance under several operating 
conditions. Results obtained using the ANN technique, 
as developed in this investigation, are very promising. 
The prediction of heat transfer obtained in this work 
has a maximum error of 2.46% and a mean quadratic 
error of 0.51%, which is by far lower than the 30% obtai-
ned by other authors (Liu and Winterton, 1991), that 
use conventional correlation techniques. The technique 
of artificial neural networks is therefore an excellent op-
tion for reliable and precise characterization of thermal 
systems where evaporation processes occur, such as in 
refrigeration and air conditioning units, and when ap-
propriately trained, the predictions obtained from neu-
ral network models are of the order of the experimental 
uncertainty.

Figure	10.	Experimental	versus	predicted	
heat	transfer	coefficient	(					vs						)	for	the	
ANN	configuration	3-3-1-1-1
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