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Abstract 

Since gas turbines are very complex and potentially unreliable machines, the improvement of their monitoring sys-
tems becomes an essential part. Considering this necessity, the present paper performs a gas turbine diagnostic al-
gorithm testing. The methodology proposed is formed by three stages. In the first stage, the commercial software 
ProDiMES (Propulsion Diagnostic Method Evaluation Strategy) is used to simulate an engine fleet and generate data 
with fault and no-fault conditions. In the second stage, a baseline model testing is implemented to improve the 
healthy engine performance approximation. Finally, a fault recognition stage based on a pattern recognition techni-
que (Multi-Layer Perceptron) performs the diagnosis and calculates the probability of correct diagnostic decisions. 
The results obtained show that: a) the software ProDiMES is an easy and convenient tool to evaluate gas turbine 
diagnostic methods, b) the baseline model testing is a key step because it allows reducing the errors that can negati-
vely influence the diagnostic process and c) the algorithm correctly performs the fault recognition task.

Keywords: gas turbine diagnostics, baseline model, fault recognition, ProDiMES, multi-layer perceptron.

Resumen

Debido a que las turbinas de gas son máquinas muy complejas y potencialmente no fiables, el mejoramiento de sus 
sistemas de monitoreo se vuelve una parte esencial. Considerando esta necesidad, el presente trabajo realiza una 
prueba de algoritmo de diagnóstico de turbinas de gas. La metodología propuesta se forma por tres etapas. En la 
primera, el Software comercial ProDiMES (Propulsion Diagnostic Method Evaluation Strategy) se emplea para sim-
ular una flota de motores y generar datos con condiciones de falla y sin falla. En la segunda etapa, se implementa una 
prueba de modelos de referencia para mejorar la aproximación de rendimiento de motor sano. Finalmente, una 
etapa de reconocimiento de fallas basada en una técnica de reconocimiento de patrones (Perceptrón Multicapa) que 
diagnostica y calcula la probabilidad de decisiones diagnósticas correctas. Los resultados obtenidos muestran que: 
a) el software ProDiMES es una herramienta fácil y conveniente para evaluar métodos de diagnóstico de turbinas de
gas, b) la prueba de modelos de referencia es un paso clave porque permite reducir los errores que influyen negati-
vamente al proceso de diagnóstico y c) el algoritmo realiza correctamente la tarea de reconocimiento de fallas.

Descriptores: diagnóstico de turbinas de gas, modelo de referencia, reconocimiento de fallas, ProDiMES, perceptrón 
multicapa.
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IntroductIon

Gas turbines are very sophisticated and costly systems 
that have been used in the past decades for different 
industrial applications due to the capacity to produce 
great amount of energy and because of their high effi-
ciencies (Boyce, 2006). Since faults and gradual deterio-
ration affect extremely the reliability and maintenance 
costs, gas turbines need advanced condition based 
maintenance and condition monitoring systems to en-
sure a correct operation (Rao, 1996). The success of the-
se systems depends on the enhancement of monitoring 
software, the degree to which engine critical elements 
are covered and the accuracy of diagnostic decisions. 
Nowadays, different gas turbine diagnostic algorithms 
are developed to identify as accurate as possible faults 
conditions of major components (e.g., compressor, 
combustion chamber and turbine). Gradual deteriora-
tion and abrupt faults (Meher et al., 2001) and sensor 
faults (Kobayashi and Simon, 2008) can be detected as 
well. This is achieved by measuring principal gas path 
parameters such as pressure, temperature, rotation spe-
ed, fuel rate, etc. 

In order to contribute to the diagnostic process im-
provement, the aim of this paper is to perform a gas 
turbine diagnostic algorithm testing. In previous works 
(Cisneros et al., 2015; Felipe et al., 2015), only prelimi-
nary results were obtained and some algorithms were 
tested separately. However, in gas turbine monitoring 
systems, an integrated approach is necessary to have 
more exact and reliable results. For this reason, the pre-
sent investigation proposes a methodology comprising 
three unified stages. In the first stage, the gas turbine 
data is obtained using the software ProDiMES which 
works with no-fault conditions, faults and degradation 
mechanisms. This software is used because not only si-
mulates a complete turbofan engine fleet based on a 
high-fidelity thermodynamic model but also allows 
evaluating gas turbine diagnostic algorithms (Simon et 
al., 2008 and 2013). To simulate real behavior for each 
engine, the software assigns unique deterioration profi-
les, noise levels and operation modes.

In the second stage, a baseline model testing is ca-
rried out to improve the healthy engine performance 
approximation. Besides, baseline models allow compu-
ting deviations, which are indicators of an engine’s sta-
te (Loboda et al., 2004). Three variations are proposed 
using simulated data with no-fault scenarios through 
ProDiMES and the model with the lowest total error is 
selected for the fault recognition stage. A baseline mo-
del can be developed based on a thermodynamic model 
or artificial neural networks (Loboda and Feldshteyn, 

2010). The first option needs complex algorithms while 
the second one requires considerable execution time for 
training. Consequently, the present paper uses a poly-
nomial function to ease the diagnostic algorithm. The 
least squares method is employed to calculate model 
coefficients determining the baseline model.

In the third stage, the baseline model selected is 
used as a basis to perform the fault recognition. With 
the intention of extracting the diagnosis information 
from raw data, it is necessary to use deviations calcula-
ted using actual measurements generated by simula-
ting fault scenarios and healthy engine values. Three 
steps are proposed to compute deviations: 

1) Initial deviation computation using a general model,
2) Creation of individual models and
3) Final deviation computation using individual models.

With these final deviations, normalized vectors (also ca-
lled patterns), can be obtained to form a diagnostic space 
and perform the fault recognition. Gas turbine fault diag-
nostics, particularly the gas path fault identification, is 
based on pattern recognition techniques such as Radial 
Basis Network (Loboda et al., 2010), Probabilistic Neural 
Network (Tsalavoutas et al., 2000), Bayesian Network 
(Romessis and Mathioudakis, 2004) and Multi-Layer Per-
ceptron (MLP) (Roemer and Kacprzynski, 2000; Volponi 
et al., 2000; Sampath and Singh, 2004). The latter techni-
que has been applied widely in the past years and has 
shown that is it not inferior to other methods (Loboda et 
al., 2010). Therefore, this work uses the MLP to calculate 
the probability of correct diagnosis. The methodology 
utilized is implemented in Matlab. Its neural network 
toolbox (Beale et al., 2014) assists in an efficient develop-
ment of the algorithm.

The paper is organized as follows. Section 2 gives 
the description of the methodology proposed. Section 3 
describes the pattern recognition method used. Section 
4 presents the results obtained for the baseline model 
testing and the gas turbine fault recognition.

Methodology proposed for gas turbIne dIagnostIcs

The methodology proposed (Figure 1) includes the fo-
llowing main stages: 

1) Gas turbine data simulation using the software Pro-
DiMES (Propulsion Diagnostic Method Evaluation
Strategy),

2) Baseline model testing to enhance the healthy engi-
ne performance approximation and
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3) Gas turbine fault recognition and the calculation of
diagnosis accuracy. The stages are described in the
below subsections.

Gas turbine data simulation usinG the software 
Prodimes

Most of the real gas turbine faults are not so severe or 
rarely occur in practice to be sufficient for a complete 
fault description. Also, physical experimentation is not 
a feasible option because of the very high costs. Instead, 
mathematical models are applied (Saravanamuttoo and 
MacIsaac, 1983). This work uses the software ProDi-
MES as a tool to simulate a fleet of engines and study 
the algorithms for gas turbine fault diagnostics. ProDi-
MES was developed by the NASA Glenn Research Cen-
ter originally intended for benchmarking international 
gas path diagnostic methods (Simon et al., 2008, 2013).

ProDiMES includes an Engine Fleet Simulation 
(EFS) that generates simulated measurement parame-
ter histories for each engine of the fleet. To simulate real 
engine behavior, it works with a deterioration profile, 
noise level and operation mode (takeoff and cruise) 
unique for each engine. The EFS is implemented in 
Matlab and consists of a Graphical User Interface (GUI), 
a Case Generator and a C-MAPPS Steady State engine 
model (Simon, 2010). Each element is described below.

Graphical User interface (GUi)

In the Graphical User Interface (GUI), the user can con-
trol the type and the number of faults occurring in the 
engine fleet. The maximal number of possible simula-
ted faults is 18 plus a no-fault case. Table 1 shows these 
fault cases and their magnitudes, within which the 
faults are distributed uniformly. Module faults (ID 1-5) 
corresponding to Fan, LPC, HPC, HPT and LPT are si-
mulated by adjusting at the same time efficiency  and 
flow capacity  parameters. Actuator faults (ID 6-7) co-
rresponding to VSV and VBV result from a mis-schedu-
ling between the commanded and current actuator 

position. There are also 11 different sensor faults (ID 
8-18) whose magnitudes are in units of average measu-
rement noise standard deviation σ. It is important to
mention that in EFS, each individual engine only expe-
riences a single fault type. Other aspects to consider
are: the number of flights to generate the output data
(the maximal number is 5000 flights per engine); the
fault evolution type (abrupt or rapid); the flight of fault
initiation (the 11th flight is the lowest value) and the sen-
sor noise (on or off).

The EFS works with eleven sensed variables. The se-
ven measured variables shown in Table 2 are available 
for monitoring and are represented by a vector    . Table 
3 shows four measured variables used as operating con-
ditions represented by a vector    . All the variables co-
rrespond to an engine standard measurement system.

case Generator

The case generator produces parameter histories after 
the user has selected the number and type of faults in 
the GUI stage. One important characteristic is the ran-
dom generation of unique faults, degradation profiles 
and operating history for each engine in the fleet. This 
also includes the following assignations: the date 
when the collection of the engine data starts, the city 
pairs for the takeoffs of the engine, the ambient pres-
sure, the atmospheric temperature, the Mach number 
and power setting parameters for takeoff and cruise. 
The level and rate of gradual performance deteriora-
tion for each engine are also considered by the Case 
Generator. They emulate the degradation that an air-
craft engine experiences during its lifetime due to di-
fferent effects such as fouling, erosion, and corrosion 
of blades and vanes. The gradual deterioration is not 
considered a fault and its development is much slower 
than the produced by faults.

c-Mapss steady-state enGine Model

Y
r

U
r

Figure 1. Methodology proposed for gas 
turbine diagnostics
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The Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) Steady State is a high-bypass turbofan 
engine model created for diagnostics research (Simon, 
2010). This model is run inside the EFS and receives the 
outputs from the Case Generator to produce the simu-
lated measurement parameter histories for each engine, 
at takeoff and cruise of each flight. C-MAPSS works 
with two spool speeds (fan and core speed). Figure 2 
shows the station numbers, the modules and the simu-
lated sensor variables of the C-MAPSS Steady-State 
model.

baseline model testinG

In order to know the current gas turbine condition by 
means of measured gas path variables, it is necessary to 
describe correctly its healthy state. According to Loboda 
et al. (2004), a good approximation of healthy engine per-
formance, also called baseline model, can be given by 
complete second order polynomials. Also, polynomials 
have shown to be better than other techniques (Loboda 
and Feldshteyn, 2010). Considering one monitored gas 
path variable  as function of four operating condition ar-
guments , the baseline model can be expressed as

(1)

where a1, … , a15  are the model coefficients calculated 
using the least squares method for all monitored  
variables. 
To find an adequate baseline model, three model varia-
tions are proposed by simulating no-fault cases (healthy 
engine scenarios) through EFS for cruise operation 
point. These variations are specified in Table 4 contai-
ning their principal characteristics and are briefly des-
cribed as follows. Variation 1 is created using 100 
engines and 5000 flights per engine, however, only the 
first 90 flights are taken into consideration to form the 
model because the deterioration is not so great in that 
interval. Variation 2 works with 1 engine and 5000 
flights. Variation 3 simulates 300 engines and 5000 
flights per engine but, only 270 flights are considered 
for model creation. For all variations, the number of 
model coefficients is k=15 and sensor noise is not consi-
dered. The criterion to select the best variation is based 
on the lowest total model error. First, an error for one 
monitored variable δY is calculated as

(2)

where Y* and Y0 are measured and baseline model va-
lues respectively. Then, the total error    for each varia-
tion is obtained by using the Root Mean Square (RMS) 
of N (m×1)-vectors     produced by all engines and 
flights considered for model (see Table 4)
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Table 1. Simulated fault cases (Simon, 2010)

ID Fault description Fault magnitude

0 No-fault ---
1 Fan fault 1 a 7%
2 LPC fault 1 a 7%
3 HPC fault 1 a 7%
4 HPT fault 1 a 7%
5 LPT fault 1 a 7%
6 VSV fault 1 a 7%
7 VBV fault 1 a 19%
8 Nf sensor fault ± 1 a 10 σ
9 Nc sensor fault ± 1 a 10 σ
10 P24 sensor fault ± 1 a 10 σ
11 Ps30 sensor fault ± 1 a 10 σ
12 T24 sensor fault ± 1 a 10 σ
13 T30 sensor fault ± 1 a 10 σ
14 T48 sensor fault ± 1 a 10 σ
15 Wf sensor fault ± 1 a 10 σ
16 P2 sensor fault ± 1 a 10 σ
17 T2 sensor fault ± 1 a 10 σ
18 Pamb sensor fault ± 1 a 19 σ

*LPC=Low Pressure Compressor, HPC=High Pressure Compressor, 
HPT=High Pressure Turbine, LPT=Low Pressure Turbine, VSV= Variable 
Stator Vane, VBV=Variable Bleed Valve

Table 2. Monitored variables (Simon, 2010)
ID Variable Symbol
1 Physical core speed Nc
2 Total pressure at LPC outlet P24
3 Static pressure at HPC outlet Ps30
4 Total temperature at LPC outlet T24
5 Total temperature at HPC outlet T30
6 Total temperature at HPT outlet T48
7 Fuel flow Wf

Table 3. Operating conditions (Simon, 2010)
ID Variable Symbol
1 Physical fan speed Nf
2 Total pressure at fan inlet P2
3 Total temperature at fan inlet T2
4 Ambient pressure Pamb
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(3)

After finding the model variation with the lowest     , the 
model coefficients are passed to the gas turbine fault 
recognition stage within a matrix C.

Gas turbine fault recoGnition

deviation coMpUtation

Due to the variation of gas turbine operation condi-
tions, absolute gas path monitored parameters change 
as well. Since these changes are greater than the produ-
ced by faults, the latter remain hidden. Therefore, a 
diagnostic process requires an important step of devia-
tion computation to reveal deterioration and faults 

effects (Loboda et al., 2004). Three steps are proposed to 
calculate deviations needed for the gas turbine diag-
nostic algorithm: 

1)  Initial deviation calculation using a general model, 
2)  Creation of individual models, 
3)  Final deviation calculation using individual models.

1. Initial deviations using a general model. After selec-
ting the variation model with the lowest error, the 
(k×m)-matrix C of model coefficients is used to form the 
general baseline model. It can be expressed as

(4)

where       is a (1×m)-vector and      is a (1×k)-vector of 
components  1, u1, u2, ...,                obtained from simula-
ted data using fault cases. An initial deviation DY  is 
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Figure 2. C-MAPSS Steady-State station 
numbers, modules and sensors (Simon, 
2010)

Table 4. Characteristics of baseline model variations

Baseline model EFS 
fault type

Number of 
engines

Total flights
per engine

Flights considered
for model

Number of model 
coefficients

Sensor 
noise

Variation 1 No-fault 100 5000 90 15 Off
Variation 2 No-fault 1 5000 5000 15 Off
Variation 3 No-fault 300 5000 270 15 Off

(1)
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obtained in the same way as equation (2) computing a 
relative difference between measured elements Y* and 
general baseline values Yϕ of a monitoring variable

(5)

Using the mean of these deviation vectors for the first 
n=10 simulated flights per engine (before the fault ini-
tiation) and considering one engine, we have

(6)

where        is a correction deviation vector and j is the 
index for flights.

 
2. Creation of individual models. As mentioned before, 

the Case Generator randomly assigns a unique opera-
ting history and deterioration profile to each engine in 
the fleet. However, the general model (4) does not con-
tain these individualities. For this reason, individual 
models are needed before calculating the final devia-
tions. Considering one flight and one engine, an indivi-
dual model vector  for all monitored variables is given 
by

(7)

where          and     are vectors of correction deviations 
and general model values respectively.

3. Final deviation calculation using individual models. 
Using individual baseline values Yr for a monitored 
variable, we obtain

(8)

where δYr is a final deviation. These deviations are the 
base of fault class formation.

faUlt class forMation

With the intention of having a homogeneous diagnostic 
process, deviations (8) are normalized as follows

(9)

where σY is a mean deviation error. One vector    of m 
monitored variables represents a fault pattern to be re-

cognized and built the diagnostic space where fault 
class formation is conducted. Since there is a considera-
ble variation of engine faults in gas turbine diagnostics, 
they are separated into a limited number of classes. Ba-
sed on the pattern recognition theory, a state D can be 
considered as only one of  present classes

D1, D2, ..., Dq (10)                        

Thus,

              and     (11)

In ProDiMES, each fault class is constructed from pat-
terns with the change of only one fault parameter (sin-
gular fault class). 

traininG and validation

In a pattern recognition process, the data can be separa-
ted into two parts: training and validation sets. Both 
sets are described shortly below and summarized in 
Table 5. The training set ZT unites patterns of all classes 
and is employed to train the method under analysis. It 
is formed by simulating all the 19 fault cases available 
in ProDiMES for better verification of the diagnostic al-
gorithm (18 faults + 1 no-fault case), a determined num-
ber of engines per class and flights per engine for cruise 
operating point. The flight fault initiation selected is 11 
with the option “fixed”, this means that the first 10 
flights will not experience any fault. The fault evolution 
rate is selected as “rapid”. Since accuracy of fault clas-
ses’ description depends on the number of simulated 
patterns, 100 engines per class and 50 total flights per 
engine are considered. However, the number of flights 
per engine for rapid fault evolution is 34. For this rea-
son, 3400 patterns per class are employed. Thus, the to-
tal size of the training set is 64600 patterns (19 fault 
cases × 100 engines × 34 flights).

The validation set ZV is created to verify that the net-
work can generalize the fault classes correctly. It is for-
med in the same manner as the training set ZT; however, 
its size is ten times smaller because it works with 340 
patterns per class. Therefore, the total size of the valida-
tion set is 6460 patterns (19 fault cases × 10 engines × 34 
flights). Every pattern in the validation set belongs to a 
known class.

Figures 3-5 exemplify the fault class formation using 
patterns of ZT in the space of two normalized devia-
tions: Figure 3 shows class 1 (no fault) and class 4 (HPC 
fault); Figure 4 shows faults 2-8 including component 
and actuator faults; Figure 5 shows sensor faults 10-14.
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diaGnosis accUracy

The fault recognition method selected classifies each 
pattern of the set ZV, producing the diagnosis dl. Com-
paring dl with a known class Dn for all validation set 
patterns, a confusion matrix is generated. Its diagonal is 
formed by correct pattern classification probabilities 
per class. A mean number     is obtained from these pro-
babilities representing the total diagnosis accuracy of 
the gas turbine fault recognition.

fault recognItIon Method

The fault recognition method chosen for this work is 
the Multi-Layer Perceptron (MLP). The MLP is an arti-
ficial neural network intended for classification pro-
blems. It uses a back-propagation algorithm that pro- 
pagates a signal for a given input vector, producing an 
output and adapting unknown coefficients based on 
the error between a target and the network output. Fi-
gure 6 shows the general structure of the MLP. The in-
put for each hidden layer neuron is given by the sum of 
an input vector     multiplied by weights in a matrix  W1

and a bias value (from a vector      ). The result is passed 
through a differentiable transfer function f1 (tansig) 
producing the neuron output (contained in a vector    ) 
within an interval of [-1, 1]. For the output layer neu-
rons, the computation is repeated in the same way 
using the vector    as input to the layer, a matrix W2, a 
bias vector    , and a transfer function f2 (logsig), produ-
cing the network output contained in a vector    within 
an interval of [0, 1]. The MLP is trained on known pair’s 
vectors: the input vector and the target vector formed 
by 1 and 0 representing the membership of a class. The 
number of input layer neurons is seven, which repre-
sent the seven monitored variables. There are nineteen 
output layer neurons corresponding to the nineteen fault 
cases. Since the variation of the hidden neuron number 
produces different results, it is necessary to find the opti-
mal setting by trial and error that yields the maximal 
diagnosis accuracy. Another parameter to set is the num-
ber of epochs, which is the number of iterations to upda-
te weights and biases. The network training also needs 

some additional parameters such as the type of activa-
tion function and the back-propagation method. 

dIagnostIc algorIthM results

errors of model variations

As shown in (Cisneros et al., 2015), Variations 1 and 3 
contain displacements in their plots of errors δY at cer-
tain intervals due to the influence of each engine. This 
situation was addressed in Subsection deviation com-
putation to correct individualities of all engines. Figure 
7 shows the errors of Variation 2 for 5000 flights and 
one monitored variable. Here, the engine degradation 
effect is observable through all flights. Each engine in 
the fleet experiences this inevitable situation.
The total error    for each of the three variations was 
calculated using the RMS of the vectors        for all engi-
nes and flights. Table 6 shows these results. Variation 2 
has the greater error (a mean for all monitored variables 
of 0.0114). The reason of this could be because the de-
gradation is greater using 5000 flights. Variation 1 and 
Variation 3 yield the lowest errors (a mean of 0.0021 and 
0.0023 respectively). Since the errors remain very close, 
any variation of the two can be chosen. However, Varia-
tion 3 works with more data (300 engines x 270 flights) 
than Variation 1 (100 engines x 90 flights) resulting in 
more execution time. For this reason Variation 1 is the 
model selected for the gas turbine diagnostic algorithm.

fault diaGnosis accuracy

In order to have the highest diagnosis accuracy, two 
MLP parameters were tuned: the number of hidden la-
yer neurons and the number of epochs. After perfor-
ming different computations, 54 neurons and 2000 
epochs produced the maximal validation probability. 
Figure 8 shows an example of this tuning. Figure 9 pre-
sents the diagnosis probability of each fault class for 
training and validation sets. Table 7 shows these values 
as well. For validation, the higher probabilities are ob-
tained from classes 2, 6 and 7 (60.50 %, 61.00% and 
58.25% of recognition respectively) while the lowest 
probabilities are produced by classes 8, 10 and 19  
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Table 5.  Characteristics of training and validation sets

Set Number of 
classes

Engines
per class

Total flights 
per engine

Flight 
of fault 

initiation

Fault 
evolution

rate

Flights for fault 
evolution

Sensor
noise

Training 19 100 50 11 Rapid 34 On
Validation 19 10 50 11 Rapid 34 On
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(9.25 %, 11.75 % and 1.25 % respectively). The differen-
ces between the probability values of both sets are ex-
plained by the limited pattern number of the validation 
set. The increase of this number can produce more ac-
curate and closer results. The total diagnosis accuracy    
for training is 40.66% and 38.29% for validation.

conclusIons

The data generation using the software ProDiMES 
allowed the simulation of healthy and faulty condi-

tions of an engine fleet in an appropriate environment 
facilitating the diagnostic process. This enabled the 
test of our diagnostic approach on the data of a new 
engine. The stage of baseline model testing permitted 
finding the best healthy engine performance approxi-
mation. This stage in an important part of the diagno-
sis process because it directly affects the diagnosis 
accuracy. After performing the calculations, the con-
clusion is that the baseline model selected has low le-
vel of errors and the deviations computed with this 
model adequately reflect engine health conditions. In 

P

Figure 7. Errors δY of Variation 2 (1 engine and 5000 flights)

Figure 3. Class 1 (no fault) and class 4             Figure 4. Component and actuator faults           Figure 5. Sensor faults
(HPC fault)

Figure 6. Structure of the MLP
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the gas turbine fault recognition stage, the Multi-La-
yer Perceptron was used to classify the fault patterns. 
The results showed that this network correctly per-
forms this task; however, the diagnosis accuracy for 

both sets (training and validation) seems to be relati-
vely low. Some objective reasons of this could be: the 
great number of fault classes and the low fault severi-
ty randomly assigned to them. The other possible ex-

Table 6. Total error    for all model variations and monitored variables

Baseline model Y1 Y2 Y3 Y4 Y5 Y6 Y7 Mean
Variation 1 0.0008 0.0010 0.0038 0.0003 0.0012 0.0024 0.0054 0.0021
Variation 2 0.0012 0.0026 0.0276 0.0014 0.0054 0.0296 0.0123 0.0114
Variation 3 0.0008 0.0010 0.0040 0.0004 0.0013 0.0031 0.0052 0.0023

e

Figure 9. Diagnosis probability of each 
fault class

Figure 8. Optimal number of hidden 
neurons

Table 7. Diagnosis probability of each fault class (training and validation)

Fault class Training 
probability

Validation 
probability

Class 1 0.3632 0.3950
Class 2 0.5247 0.6050
Class 3 0.2447 0.4050
Class 4 0.6288 0.5525
Class 5 0.8244 0.5375
Class 6 0.6682 0.6100
Class 7 0.7126 0.5825
Class 8 0.1150 0.0925
Class 9 0.3209 0.3225
Class 10 0.0924 0.1175
Class 11 0.5197 0.4950
Class 12 0.2168 0.3750
Class 13 0.4526 0.2400
Class 14 0.4650 0.3875
Class 15 0.5365 0.4450
Class 16 0.4871 0.4650
Class 17 0.1071 0.1250
Class 18 0.4288 0.5100
Class 19 0.0165 0.0125

0.4066 0.3829P
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planation is that we did not take into consideration all 
peculiarities of the engine simulation in ProDiMES 
because we are not authors of this simulator. 

Future works can consider working with different 
recognition methods such as Radial Basis Network, 
Probabilistic Neural Network or Support Vector Machi-
nes in order to ensure that the fault recognition process 
was carried out correctly. The major issue is to increase 
the diagnosis accuracy.
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C-MAPSS Commercial Modular Aero-Propulsion 
System Simulation

Vector of monitored gas path variables

EFS Engine Fleet Simulation Yr,   r Scalar and vector of individual baseline values
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