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Abstract
Milling is an intrinsically interrupted cutting operation; therefore, vibrations occur. There are both self-excited (chatter) and forced 
vibration. Vibrations in milling appear due to the lack of dynamic stiffness of some components in the machine tool-tool-workpiece 
system. If the vibrations are excessive, the machine stability is negatively affected. In this paper a parallel kinematic machine is mo-
delled and structurally analyzed, considering vibrational parameters (mass, inertia, stiffness, and damping). Theoretical results are 
used to verify the model. The proposed model provides an effective guide to design milling machines with the best structural arran-
gement (architecture) and enhancing performance. The value of this finding is in answering the research question: “Should the ma-
chine tool-tool-workpiece system be kept decoupled to mitigate the vibration generated during a cutting operation?” Two approaches 
were proposed to determine which option (coupled or decoupled bases) provides greater dynamic rigidity. The evidence shows that 
the decoupled base proposal maintains a cutting operation without displacement peaks due to greater operation times and better 
damping response.
Keywords: Cutting force, dynamic stiffness, natural frequency, parallel kinematic machine, vibration analysis.

Resumen
El fresado es una operación de corte intrínsecamente interrumpida, por tanto, se producen vibraciones. Aparecen vibraciones tanto 
autoexcitadas como forzadas. Las vibraciones en el fresado aparecen debido a la falta de rigidez dinámica de algunos componentes 
en el sistema máquina herramienta-herramienta-pieza de trabajo. Si las vibraciones son excesivas, la estabilidad de la máquina se ve 
afectada negativamente. En este trabajo se modela y analiza estructuralmente una máquina cinemática paralela, considerando pará-
metros vibracionales (masa, inercia, rigidez y amortiguación). Los resultados teóricos se utilizan para verificar el modelo. El modelo 
propuesto proporciona una guía eficaz para diseñar fresadoras con la mejor disposición estructural (arquitectura) y rendimiento 
mejorado. El valor de este hallazgo radica en responder a la pregunta de investigación: “¿Debe mantenerse desacoplado el sistema 
máquina herramienta-herramienta-pieza de trabajo para mitigar la vibración generada durante una operación de corte?”. Se propu-
sieron dos enfoques para determinar qué opción (bases acopladas o desacopladas) proporciona una mayor rigidez dinámica. La 
evidencia muestra que la propuesta de base desacoplada mantiene una operación de corte sin picos de desplazamiento debido a 
mayores tiempos de operación y mejor respuesta de amortiguamiento.
Descriptores: Análisis vibratorio, frecuencia natural, fuerzas de corte, máquina herramienta, mecanismo paralelo espacial, rigidez 
dinámica.
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Introduction

Parallel mechanisms for machining tasks have a special 
attraction for many researchers due to the design cha-
llengers involved. Manufacturers and designers of the-
se machine tools have long maintained that one of the 
inherent characteristics of the parallel mechanism is 
their potential improved stiffness, reduced moving 
mass, and high dynamic performance (Enikeev et al., 
2018; Rosyid et al., 2020; Shen et al., 2020; Zhang, 2010). 
However, vibration induced via the excitation of struc-
tural modes can cause waviness errors and harm the 
machine parts resulting in errors in the workpiece sur-
face. Finding an accurate dynamic behavior of parallel 
kinematic machine structures is still an intricate work 
(Munoa et al., 2016). However, some advanced methods 
have been accomplished in the development of experi-
mental methods for determination of the mode shapes 
of parallel kinematic machine structures. Several re-
searchers have studied the vibration analysis of parallel 
kinematic machines (Mahboubkhah et al., 2018; Najafi 
et al., 2016; Yu et al., 2020). 

However, in most proposals, the results of modal 
analysis are rarely used to give a practical approach to 
the machine tools operators. These results are usually 
verified via Finite Element Modeling (FEM). Some ap-
proaches have been proposed to verify the analytical 
models (Chen et al., 2016), to study vibrational modes of 
natural frequencies (Ding et al., 2020; Tuffaha et al., 
2019), or to extract natural frequencies and mode sha-
pes (Gao & Altintas, 2020; Gibbons et al., 2020). Deter-
mining vibration characteristics of machine tools 
structure is of special concern in determining suitable 
working conditions and selecting the appropriate ma-
chining parameters to avoid self-excited vibrations in 
machining time.

Since modal analysis provides important informa-
tion on the dynamic behavior of engineering structures, 
it is used as an appropriate tool to study and solve com-
plex vibration issues on machine tools. In our approach, 
accurate computer simulations of machine tools struc-
ture using finite element software will lead to natural 
frequencies and vibration modes shapes for machine 
tool structure arrays. We designed structural machine 
tools that provide rigid support on which various su-
bassemblies can be mounted and move the work piece 
and tool. These changes in the structural configuration 
will probably alter the natural frequencies and vibra-
tion modes of the machine. Thus, prediction and pre-
vention of the vibration is possible in the machine tool 
structure for a wide range of changes in the array of 
these configuration (Mahboubkhah et al., 2017; 2008; 

2009; Pedrammehr et al., 2019). In order to support the 
work piece and position it correctly with respect to the 
cutter under the influence of cutting forces, it is neces-
sary for the structure to have high dynamic stiffness 
values. Two approaches are proposed to determine 
which variant provides greater rigidity dynamic. The 
proposals consist of keeping away (decoupled) or kee-
ping together (coupled) the base that supports the 
workpiece and the base of the tool and the spindle/tool-
holder.

The current paper is focused on the dynamic pro-
perties of a 3 degree of freedom (DoF) translational pa-
rallel kinematic machine at its resonance frequencies. 
These properties are identified via the FEM analysis. A 
model of the 3 DoF PKM is prepared in NX software. A 
modal analysis is applied to extract the natural frequen-
cies and mode shape of the structure. Thus, the vibra-
tion model of a parallel kinematic machine has been 
presented, and relevant explicit equations are derived. 
Here, mass, inertia, stiffness, and damping of various 
elements comprising the mechanism are all considered.

Theoretical development

Introducing the 3 DoF parallel kinematic machine

The three-prismatic-revolute-revolute-revolute (3-
PRRR) configuration is a parallel mechanism with three 
legs, each being a 4 DoF serial mechanism (Gosselin & 
Kong, 2004a) (Figure 1).

Figure 1. Schematic of the 3PRRR TPM

Each leg constrains two rotations. Therefore, the 
3-PRRR configuration is an over-constrained mecha-
nism. The terminal revolute joints of the three legs are 
connected to the mobile platform such that their axes 
are orthogonal. The most influential design parameters 
of the 3-PRRR are angles α1, α2, and α3 (Gosselin et al., 
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2004b). These angles determine the output resolution as 
well as the overall shape of the mechanism. The three 
resolutions are equal when α1 = α2 = α3 as well as the 
elements of the diagonal Jacobian matrix; the resulting 
mechanism is assumed to be isotropic (Zanganeh & An-
geles, 1997). Moreover, the mechanism behaves exactly 
as a serial Cartesian mechanism when α1 = α2 = α3 = 0 
(X-Y-Z stage) (Gosselin et al., 2004b).

Assembly mode of the machine

The forward kinematic of the 3-PRRR PKM yields an 
eight-degree polynomial in px (Kim & Tsai, 2003). The-
refore, it is possible to build eight different assembly 
modes from the same mechanism. The Z actuator can 
be located anywhere perpendicular to the X-Y plane. 
The limbs that connect the moving platform and the 
XYZ actuators could have the “elbow” facing either up 
or down. Figure 2 shows the practical assembly mode 
proposed in the present work.

Coupled and decoupled base proposals

Two approaches are proposed to determine which va-
riant provides greater dynamic rigidity:

Proposal 1: Keep the base that supports the fixed 
workpiece to the tool’s base (Figure 3a).

Proposal 2: Detach the base that supports the fixed 
workpiece from the tool’s base (Figure 3b).

Vibrating modeling and resolution of  
the motion equations

The vibrating model for all the proposals was obtained 
from grouping the PKM’s components considering 
them as groups of mass elements with an associated 
stiffness and damping capacity. Thereafter, we shall de-
rive the governing equations of motion for each subsys-
tem via the force-balance method.

To obtain the governing equations of motion, we 
use the generalized coordinate x measured from the 
system’s static equilibrium position. Gravity forces are 
not considered below since the coordinates are measu-
red from the static equilibrium position.

The parallel kinematic machine is described via 
inertial elements, m, along with discrete spring ele-
ments, k, and damper elements, c. All inertial elements 
translate only along the i direction. The external force 
Fc(t) in the i direction is a representative disturbance ac-
ting on the tool due to the uncut material. The free-bo-
dy diagrams are used to apply the force-balance method 
to each inertial element. 

Modeling method and FEM modal analysis

Coupled base proposal: One degree of freedom system 

The decoupled base proposal with one degree of free-
dom (DoF) is the starting point for all other cases since 
some values from this case are used in the other ones. 
This model encompasses the workpiece and its base in 
just one mass-spring-damper subsystem. Another 
subsystem encompasses the machine structure, the 
tool, and the toolholder. The cutting force is modeled in 
the contact zone between the cutter and workpiece du-
ring the cut (Figure 4).

Figure 4 assigns elements by colors to the vibrating 
model. Yellow-colored components correspond to m1, 
k1, and c1, while the blue-colored ones correspond to m2, 
k2, and c2. This model has only 1 DoF, and this is obtai-
ned by assuming that the tool displacement (x1) will be 
equal to that of the workpiece (x2), and assuming that 
the tool and the workpiece will be always keep in con-
tact during the cutting process.

The motion equation for the system is:

(1)1 1 2 1 1 2 1 1 2( ) (c ) ( ) cx m m x c x k k F+ + + + + = 

Figure 2. Design of  
the PKM

Figure 3. a) Coupled bases and b) decoupled bases of 
the PKM

a) 		                       b) 

Figure 4. PKM’s vibrating model 
with 1 DoF. Coupled base
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Coupled base proposal: Two degrees of freedom system

The coupled base proposal separately encompasses the 
elements that conform to the structure of the tool, the 
workpiece, and the base by considering that the first 
two are not directly connected to the ground, but are 
rather fixed to a common base, which is concurrently 
connected to the ground (Figure 5). 

Figure 5 assigns elements by color to the vibrating 
model: Blue-colored components correspond to ele-
ments m1, k1, and c1; yellow-colored ones correspond to 
m2, k2, and c2; and gray ones correspond to m3, k3, and c3.

Three mass-spring-damper systems can be observed in 
which two masses (m1 and m2) are joined to the same 
base (m3). By considering the displacement equality 
between the workpiece and the tool (x1 = x2), because of 
the cutting force connection between them (Figure 5), a 
two degree of freedom system is in place with these 2 
DoF being described by x1 and x3.

The motion equations for the system are:

	

(2)

	
                                          m3)

(3)

with an equivalent representation in matrix form:

(4)

Or:

	 (5)

Here 		        and    are the matrix for mass, dam-
ping, stiffness, acceleration, velocity, displacement, and 
force, respectively.

Decoupled bases proposal: Three degrees of freedom system

In this proposal, the two mass-spring-damper system 
in series are present: One corresponds to the tool and 
the other one to the workpiece.

Figure 6. PKM’s vibrating model with 3 DoF

Figure 6 assigns elements by color to the vibrating mo-
del. Yellow components correspond to elements m1, k1, 
and c1; blue ones correspond to m2, k2, and c2; gray ones 
correspond to m3, k3, and c3; green-colored ones corres-

1 1 2 3 1 2 1 1 2 3 1 2( ) ( ) ( ) ( )x m m x m m x c c x c c+ + + + + + − − +   

1 1 2 3 1 2( ) ( ) cx k k x k k F+ + + − − =

1 1 2 3 1 2 3 1 1 2 3 1 2 3( ) ( m ) ( ) ( c )x m m x m m x c c x c c+ + + + + − − + + + +   1 1 2 3 1 2 3 1 1 2 3 1 2 3( ) ( m ) ( ) ( c )x m m x m m x c c x c c+ + + + + − − + + + +   

1 1 2 3 1 2 3( ) ( ) 0x k k x k k k+ − − + + + =

11 2 1 2

1 2 1 2 3 3 0
cxk k k k F

k k k k k x
  + − −   
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Figure 5. PKM’s vibrating model with 2 DoF
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pond to m4, k4, and c4. In this vibrating model, a total of 
four mass-spring-damper systems are present and 
grouped by pairs. Mass pairs are connected via the cut-
ting force similar to the two degrees of freedom system; 
therefore, x1 equals x2 for a total of three degrees of free-
dom described as x1, x3, and x4.
The motion equations for the system are:

(6)

			 
Or:

(7)
	 .				  
Here          	          	              and     are the matrix for mass, dam-
ping, stiffness, acceleration, velocity, displacement, and 
force, respectively.

Obtaining modal parameters and resolving motion 
equations

Mass is obtained by employing NX software via the 
materials shown in Table 1. This leads to the magnitu-
des shown in Table 2.

Table 1. Materials of the solid model in NX

Subsystem Component Material

Workpiece

Legs (profiles) Aluminum 6061
Table Steel

Workpiece holder Steel
Workpiece Steel

Tool

Machine structure 
(profiles) Aluminum 6061

Linear guides Steel
Joints ABS

Links Aluminum 6061

Table Brass

Table 2. Mass values
System Mass Magnitude [kg]

1 DoF
m1 305.1013
m2 11.8083

2 DoF
m1 50.208
m2 4.2585
m3 302.3477

3 DoF

m1 4.2585
m2 50.2080
m3 254.8933
m4 7.5490

The concept of natural frequency relates mass to stiff-
ness. By already knowing the value of each of the 
model’s masses, it is only matter of finding the natural 
frequency value associated with each mass-spring-
damper system. This value was obtained via FEM. The 
mesh parameters used for the simulation are shown in 
Table 3.

Subsequently, the concept of critic damping is em-
ployed for a 1 DoF mass-spring-damper system, assu-
ming an underdamped operation with a damping 
factor of 0.5.

The subsystems from the 1 DoF case are the simpli-
fication of the subsystems from the 3 DoF case. Thus, 
the stiffness constant and equivalent damping were 
employed to obtain the stiffness and damping values of 
the 3 DoF model as well as the supposition where  
k1 > k4, k3 > k2, c1 > c4 and c3 > c2. These values are based on 
the discrepancy of magnitudes of the natural frequen-
cies obtained by finite element for each of the mass-
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spring-damper subsets from the 3 DoF case (tool, 
spindle-toolholder, workpiece and workpiece-holder). 
Thus, a stiffness and damping proposal for the 3 DoF 
system is obtained. This proposal maintains a similar 
porportion to the values of natural frequency associa-
ted with each subset.

Finally, the mass, stiffness and damping values co-
rresponding to the subsystems supported by the bases 
were set equal between these 2 DoF and 3 DoF systems 
because the difference between the 3 DoF and 2 DoF 
systems comes down to the bases (the systems above 
these are the same). However, since the 2 DoF system’s 
base shows a remarkable geometric similarity with the 
3 DoF system’s tool base, the mass values, stiffness, and 
damping values were set equal. The stiffness and dam-
ping values associated with each model are shown on 
Table 4.

Cutting force

Machining conditions that produce discontinuous 
chips cause variations of the cutting forces. Therefore, 
the stiffness of the cutting tool holder and the machine 
tool is of major importance in avoiding vibrations that 

deteriorate the surface finish. During milling, the pro-
cess of cutting by each tooth is periodically interrupted 
and the traverse cross section of the undeformed chip is 
variable (El-Hofy, 2014). Thus, by assuming a face mi-
lling operation, a nonsymmetrical bilateral case of an 
entrance angle ϕ1, and leaving angle ϕ2, the chip mean 
thickness can be calculated on a single tooth from the 
equation:
Fm = ksbhm(x)	 (8)

where ks is the cutting stiffness, and bhm(x) is the area of 
cutting contact with a tool setting angle of x = 90°. The 
total mean force in the direction of cutting speed V be-
comes

	 (9)

where fz is the feed per tooth and Zc is the number of 
teeth.

Table 5 summarizes the cutting parameters conside-
ring some middle power cutting parameters according 
to Table 2.4 in (Isakov, 2003). 

1 2[cos( ) cos( )]
2

s z c
t

k f hZ
F

ϕ ϕ
π

−
=

Table 3. Mesh parameters

Subsystem Elements size 
[mm] Component Bodies Material

Workpiece

10 Legs (profiles) 4 Aluminum 6061
10 Table 1 Steel
10 Workpiece holder 2 Steel
10 Workpiece 1 Steel

Tool

10 Machine structure 
(profiles) 16 Aluminum 6061

15 Linear guides 3 Steel
10 Joints 16 ABS
5 Links 6 Aluminum 6061
15 Table 1 Brass
10 Legs (profiles) 8 Steel

Table 4. Stiffness and damping values

System Stiffness Magnitude  
[N/μm] Damping Magnitude 

[N∙s/m]

1 DoF
k1 0.183945 c1 0.007941
k2 0.177989 c2 0.001449

2 DoF
k1 0.258531 c1 0.010528
k2 1.049272 c2 0.008542
k3 0.637595 c3 0.025965

3 DoF

k1 1.049272 c1 0.008542
k2 0.258531 c2 0.010528
k3 0.637595 c3 0.025965
k4 0.214349 c4 0.001745
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Table 5. Cutting parameters estimated for the PKM

ks= 2059.4 [N/mm2] h = 3.81 [mm] fz = 0.2032 [mm]

Zc = 4 [teeth] ϕ1 = 45° ϕ2 = 135°

Motion equations resolution

The motion equations for the vibrating models were 
obtained via the Euler method for differential equa-
tions defining position and velocity in function of velo-
city and acceleration, respectively, associated with a 
step size hp. A big step size can lead to a wrong approxi-
mation in the direct mathematic outcome. On the other 
hand, a small step size offers a better approximation 
although it requires more time for its resolution. One 
way to establish an appropriate step size within mecha-
nical systems is to make a phase space graph with dis-
placement and velocity as variables.

The lack of dissipation elements in a vibrating system 
causes a cyclic response that does not allow reduction in 
neither displacements nor velocities. This generates clo-
sed curves in displacement versus velocities graphs. This 
phenomenon is useful to define the adequate step size 
for the differential equations to solve. By evaluating 
many step size values, we found that hp=0.001 is suffi-
cient, since this value already reflects the cyclic behavior 
of the displacements and velocities of a 1 DoF vibrating 
system with no dissipation elements present.

The resolution of the previously mentioned equa-
tions was developed by employing Euler’s method for 
differential equations by starting off from initial values 
(t = 0 s) with a 0.1 μm value for each one of the displa-
cements (x1, x2, x3, etc.) and a 0 μm/s value for each ve-
locity (v1, v2, v3, etc.). Furthermore, gathering the mass, 
damping, stiffness, and natural frequencies values was 
supported by finite element simulation with NX Soft-
ware and making use of NX Nastran solver with a struc-
tural type analysis using “SOL 103 Response Simulation” 
solve tool.

Numerical method for the 2 DoF model  
(Coupled base)

We next employed the Euler method for resolution of 
differential equations:
 
	 (10)

(11)

(12)

Where:

Being x1i and x1i, the displacements and velocities, 
respectively. These correspond to the i-iteration for the  
x1 variable, while x1i+1 and x1i+1 correspond to the dis-
placements and velocities, respectively, inherent to the  
x1 variable at the subsequent iteration.

Numerical method for the 3 DoF model (Decoupled 
bases)

We next employed the Euler method for differential 
equations resolution:

				    (13)

			   (14)

While, for the displacement matrix:

(15)
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With:

M = m1m3m4 + m2m3m4

Results

The results were obtained using equations (9) and (11) 
for the 2 DoF system, and equations (12) and (13) for the 
3 DoF one. Figure 7 shows displacements for x1, x3, and 
x4 within the initial 200 s of the milling operation. The 
maximum values are close to 7000 μm with a significant 
difference for x3. Figure 8 shows the displacement res-
ponse along 1000 s. This behavior has a period of 400 s.

Figure 9 shows the behavior of velocities v1, v3, and 
v4 along 200 s. The maximum values are close to 300 
μm/s with a significant difference in magnitude for v3. 
The v3 maximum values match with v4 minimum values 

on each cycle. Figure 10 shows the velocity behavior 
previously mentioned along 1000 s, which allows ob-
servation of the stabilization that occurs progressively 
except for v3, which seems to maintain the same beha-
vior and magnitudes throughout.

Figure 11 shows the displacement behavior of x1 
and x3 along 200 s. These have the maximum values 
around 6000 μm/s and 5000 μm/s, respectively. Figure 
12 shows the displacement behavior of x1 and x3 along 
1000 s. This behavior has a period of 180 s.

Figure 13 shows velocities v1 and v3 along 200 s with 
maximum magnitudes close to ±200 μm/s for v1, while 
v2 shows maximum values of half that magnitude. Fi-
gure 14 shows velocities v1 and v3 along 1000 s with a 
period of approximately 180 s. In this case, the veloci-
ties do not have significant damping.
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Figure 7. Displacement of the 3 DoF 
system (decoupled bases) 200 [s]
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Figure 8. Displacement of the 3 DoF 
system (decoupled bases) 1000 [s]

Figure 9. Velocities of the 3 DoF system 
(decoupled bases) 200 [s]

Figure 10. Velocities of the 3 DoF system 
(decoupled bases) 1000 [s]
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Figure 11. Displacement of the 2 DoF 
system (coupled bases) 200 [s]

Figure 12. Displacement of the 2 DoF 
system (coupled bases) 1000 [s]

Figure 13. Velocities of the 2 DoF system 
(coupled bases) 200 [s]
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Discussion

In the first instance, the maximum values for displace-
ment and velocity from the 2 DoF system are lower 
than those for the 3 DoF system. Nevertheless, that fact 
does not necessarily means that it is better; the maxi-
mum displacements and velocities correspond to the 
variable associated with the interaction between the 
tool and workpiece subsystems. The values oscillate 
between 7600 [μm] and 280 [μm/s] in the decoupled ba-
ses, while in the coupled base proposal, these values 
oscillate between 6400 [μm] and 220 [μm/s], which is 
1.57 % less for displacements and 21 % for velocities 
both with respect to the 3 DoF system.

On the other hand, the general behavior of the dis-
placements in the 3 DoF system is repeated in longer 
periods (every 400 seconds, approximately), but it is 
repeated in shorter periods (every 200 seconds, ap-
proximately) in the 2 DoF system. This can be interpre-
ted as behaviors with smaller frequencies for this first 
system, and greater ones for the second one. This means 
that the decoupled base proposal will reach its maxi-
mum displacements in a longer period compared to the 
coupled base proposal. Therefore, these values for 
maximum displacements in the 3 DoF system will be 
prevented more easily via constant cutting times below 
200 seconds.

The 3 DoF system has an overall better damping 
than the 2 DoF one; hence, displacements at lower velo-
cities can be expected as the cutting process advances 
through time in this first system. In the second system, 
velocities do not achieve a significant reduction in va-
lue. Nonetheless, by considering the factors mentioned 
in the previous paragraph (cutting operations below 

200 seconds), a substantial reduction in velocities could 
not happen because the first major velocity reduction 
does not appear until 320 seconds. The velocities are  
44 % lower than the initial ones.

The decoupled base proposal shows an overall bet-
ter performance under these considerations. A simpli-
fied solid model of the proposal can be observed in 
Figure 15.

Figure 15. Final design (decoupled bases approach)

The results for the displacements and velocities in both 
design proposals are too large for machining with in-
dustrial standards. Nevertheless, this can be broadened 
to the PKM modeling because this only represents the 
two inertial elements instead of making a model that 
englobes each component of the real system as an addi-
tional inertial element. This great scale response can be 

Figure 14. Velocities of the 2 DoF system 
(coupled bases) 1000 [s]
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translated as the sum of displacements associated with 
diverse components of each subsystem. This is only for 
the displacements present in the real interaction bet-
ween tool and workpiece. 

Furthermore, the validity of the natural frequency 
values obtained via simulation for the different ele-
ments of the solid models was evaluated by making 
theoretical calculations of the natural frequency for a 
rod-type structure without any support (made out of 
steel with square cross-section with 20 [mm] per side 
and a length of 400 [mm] as well as ρ=7829 [kg/m3] and 
E=206.94 [GPa]). We then compared theoretical values 
with the ones obtained by the simulation. We compared 
the lower value of natural frequency associated with 
each natural vibration mode to obtain the results shown 
in Table 6.

Table 6. Error associated with the natural frequency calculations 
via simulation

Mode fsim [Hz] fanalyt [Hz] Error [%]
1 654 661 1.11
2 1774 1821 2.62
3 3400 3571 4.83
4 5465 5903 7.45
5 7904 8826 10.47

Table 6 shows the values obtained by simulation (fsim) 
and the values obtained analytically (fanalyt). The data 
show how the error increases alongside the normal vi-
bration mode at issue. However, an error of approxima-
tely 1.11 % is totally acceptable because the lowest 
natural frequency of each assembly was always used 
(the one associated with the first normal vibration mode).

Conclusion

This paper describes structural analysis of a 3 degree of 
freedom parallel kinematic machine. The theoretical re-
sults were used to demonstrate the viability of the mo-
deling approach. The proposed model provides an 
effective guide to design milling machines with the best 
architecture and enhancing performance. Two assem-
bly proposals were modeled and analyzed. The decou-
pled base design proposal has a better performance 
characteristic to develop machining operations. It can 
maintain a cutting operation without displacement 
peaks due to greater operation times and better dam-
ping response.
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