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Abstract

Canceling the effects generated by inertia in the mechanisms is a complicated task with great benefits, such as reducing the chattering 
effect and, in turn, energy consumption. This paper proposed a control method for electromechanical systems with one degree of 
freedom. The proposed method guarantees robustness, reaching a desired position in a finite time through the application of a con-
trol law using sliding modes with Time Base Generator (TBG) and the cancellation of the effects produced by inertia. The speed be-
longs to Gaussian bell-shape profile, then the speed has a normal distribution from energy used during the displacement, which 
allows the control algorithm to be applied in tasks such as feeding parts in processes that require precision or in painting processes, 
since the behavior of the speed is similar to the speed of the human limbs. The contribution is a robust control algorithm that can be 
adapted to any one degree of freedom mechanism that has the task of reaching a position in a specific time, the time begin determi-
ned by the user. The algorithm eradicates speed fluctuations, so over-acceleration is zero and disturbances generated by loads applied 
to the mechanism are also compensated. 
Keywords: Chattering free, inertial effects, sliding modes, time base generator, one degree of freedom mechanism.

Resumen

Cancelar los efectos producidos por la inercia en los mecanismos es una tarea complicada que trae grandes beneficios, como son: 
La reducción del efecto denominado chattering y, al mismo tiempo, reducción en el consumo de energía. Este artículo propone una 
metodología de control para sistemas electromecánicos de un grado de libertad. La metodología propuesta garantiza robustez, busca 
alcanzar una posición deseada en un tiempo específico aplicando una ley de control que utiliza modos deslizantes y un generador 
de base de tiempo (TBG) cancelando con ello los efectos generados por la inercia. La velocidad presenta una forma de campana 
Gaussiana, es decir, la velocidad posee una distribución normal de energía durante el movimiento, lo que permite aplicar el algoritmo 
de control a tareas como: Alimentación de piezas en procesos que requieren precisión o procesos de pintura, ya que el comporta-
miento de la velocidad es similar a la velocidad descrita por las extremidades del cuerpo humano. La contribución es un algoritmo 
de control robusto que puede ser adaptado a cualquier mecanismo de un grado de libertad cuya tarea sea alcanzar una posición en 
un tiempo especificado por el usuario. Las fluctuaciones de velocidad son erradicadas por el algoritmo; en consecuencia, la sobre 
aceleración es nula y las perturbaciones generadas por las cargas aplicadas al mecanismo también son compensadas. 
Descriptores: Efectos inerciales, efecto slinky, efecto Chattering, generador de tiempo base (TBG), sistemas de control, modos des-
lizantes, mecanismos de 1 GDL.

Cancellation of inertial effects in 1 degree of freedom mechanisms applying sliding mode 
control with response in finite time
Cancelación de efectos inerciales en mecanismos de 1 grado de libertad aplicando 
control por modos deslizantes con respuesta en tiempo finito
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IntroductIon

In recent years, many studies have focused on solving 
the problem of chatter-free mechanisms. On the other 
hand, new proposals have been made to obtain control 
algorithms capable of developing bell-shaped speed 
profiles whose task is to emulate the speed profiles des-
cribed by human limbs. Tasks such as the transport of 
dangerous substances or liquids that can spill show the 
importance of eradicating inertial effects, achieving a 
bell-shaped speed profile.

For example, the way a human being generally mo-
ves his hand along a more or less straight path from one 
point to another shows common invariant kinematic 
features such as a bell-shaped speed profile (Morasso, 
1981), many models have also been proposed; for exam-
ple, “a minimal torque-change model” (Uno et al., 1989), 
“a minimum jerk model” (Flash & Hogan, 1985), both 
models can generate hand trajectories in good agree-
ment with the experimental data. Furthermore, in Yeu-
ng & Chen (1988) a variable structure model following 
control design (VSMFC) for robotic applications was 
presented in which the chattering problem was solved. 
In Chen et al. (1990) a control algorithm was proposed 
where the inverse of the inertial matrix was not requi-
red. Another method that uses an electrostatic potential 
field and a sliding mode for a manipulator that regula-
tes the movement time but not the dynamic behavior of 
a robot has been presented in Hashimoto (1993). In 
addition, Morasso (1993) proposed a Time Base Gene-
rator (TBG) that generates a time series with a bell-sha-
ped velocity profile, and showed that the trajectory of a 
hand can be generated with a transnational speed and 
rotational speed with a TBG signal.

On the other hand, Sira (1992) and Zhang & Panda 
(1999) have proposed an involved dynamic sliding 
mode control technique for a general class of nonlinear 
systems. However, the strict requirement of the measu-
rement of the slip surface derivative is necessary, so 
Tsuji et al. (1995) proposed a method with a TBG in arti-
ficial potential field approach (APFA) that can regulate 
the time of motion and also the speed profile of the ro-
bot but it cannot be applied to dynamic control. In 1998, 
a new method is developed introducing the combina-
tion of a time scale transformation with a TBG, the 
method is useful for robot time scheduling problems 
(Tanaka et al., 1998). In addition, a new stability analysis 
and design procedure for variable structure robotic 
controllers with PID-type sliding surfaces was presen-
ted, the controller is simple and robust (Stepanenco et 
al., 1998).

A human-like trajectory is generated for the robots 
with the TBG-based trajectory generation method (Ta-

naka et al., 1999), then the TBG generates a target spatial 
and temporal trajectory for the robot (Tanaka et al., 
2000). A novel chattering-free dynamic slip mode con-
troller is proposed for a time-varying sliding regime for 
all times and for any initial conditions (Parra, 2001). 
Subsequently, a Cartesian control system is proposed 
in (Dominguez et al., 2008), which guarantees a robust 
tracking in finite time based on a time base generator 
for uncertain robotic arms, to achieve this goal we pro-
posed a nonlinear control based on modes second-or-
der sliders, however this method only works on robots 
without gravity. Another alternative to reduce the iner-
tial effects has been presented in (Kuo et al., 2011). The 
chatter effect is addressed in García et al. (2011). On the 
other hand, a non-chattering sliding mode controller is 
proposed, the new sliding surface is parameterized by 
a base time generator (Gashemi & Nersesov, 2013). 
Chatter is a phenomenon that has been sought to elimi-
nate through many methodologies, thus a new sliding 
mode controller with a continuous control strategy has 
been proposed to achieve a chattering-free controller 
(Feng et al., 2014). A new controller with faster response 
and gravity compensation was introduced in Huang et 
al. (2014), Nonlinear Proportional Derivative (NPD) 
controller has smaller errors than conventional Propor-
tional Derivative (PD) controllers.

In this paper we present a robust control algorithm 
for one degree of freedom mechanisms that solves the 
problem of inertial effects, eliminates chattering and 
presents a bell-shaped speed profile. The algorithm is 
based on a sliding mode control and a time base gene-
rator, the algorithm reaches a desired position in a fini-
te time, the algorithm is adaptable to any mechanism of 
one degree of freedom and is applicable to tasks that 
require precision, the future scope of this research is to 
apply the algorithm to robotic arms, such as prostheses 
or mechanisms focused on rehabilitation, future studies 
to mechanisms of two or more degrees of freedom.

ModellIng

Kinematic model–vector loop method 

This section presents the kinematic and dynamic analy-
sis of a one degree of freedom mechanism. The mecha-
nism has a rotary actuator that generates the displacement  
q in the point, and point  is vertically displaced. 

Figure 1 shows the kinematic constraint equation. 
R1, R2, and R3 are the vectors that describe the loop 
equation (1).

R1 = R2 + R3 (1)
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The angles are defined with respect to the positive X-axis 
and the vectors are defined by equations (2), (3) and (4).

R1 = (0, Yh) (2)

R2 = AB (cos q, sin q) (3)

R3 = BC (cos θ3, sin θ3) (4)

Figure1. Definition of the kinematic constraint equation

For position analysis we define the vector P as the unk-
nown variables that determine the position.

 (5)

With the components of each position vector, the kine-
matic constraint functions (6) and (7) are obtained, the 
functions are equal to zero because the geometry of the 
mechanism is closed.    

f1 = R2 cos q + R3 cos θ3 = 0 (6)

f2 = R2 sin q + R3 sin θ3 - Yh  = 0 (7)

With the kinematic constraints, the position matrix (8) 
is found, now it is possible to know the position of the 
mechanism at any time:

 (8)

The kinetic energy of the mechanism is obtained from 
the velocity analysis, therefore F is the matrix of the ki-
nematic constraint functions of the mechanism:

(9)

Differentiating the matrix of the kinematic constraint 
functions with respect to time, the velocity is obtained:

 (10)

From (10) the acceleration is derived:

 (11)

The matrices are solved using Wolfram Mathematica®. 

MechanIsM dynaMIcs

The dynamic model of the mechanism used in this pa-
per can be written as follows:

 (12)

Where M(q´) denotes a nxn symmetric positive definite 
inertial matrix,                  represents a nxn matrix of Co-
riolis and centrifugal forces, G(q´) models the gravity 
forces, and U is the torque input. The methodology by 
extended dynamics method, we have:

 (13)

 (14)

Therefore, substituting (13) and (14) in (12), the dyna-
mic model components are rewritten as:

 (15)

 (16)

Jacobian Extended:

 (17)
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Inertia Matrix:

 (18)

Matrix of centripetal and Coriolis forces:

 (19)

Gravitational vector:

G´(q) = g  (20)

The dynamic model is solved with Wolfram Mathema-
tica® and the solution is validated using: Working Mo-
del® vs Matlab-Simulink®. Figure 2 shows the 
validation of the dynamic model in terms of the genera-
lized variable q. The simulation conditions are shown in 
Table 1.

Figure 2. Dynamic model validation: a) “q” position (q), b) “q” 
speed profile (  )   and c)” q” acceleration (  )

Table 1. Validation parameters of the dynamic model in the 
Matlab-Simulink software

Simulation parameters Value

Tau (U) 0.001 Nm

Solver O de 4 (Runge-Kutta)

Sampling time of simulation 3 s

Integration step 0.001

Figure 3a shows the position of the generalized variable 
q, the velocity of the generalized variable is shown in 3b 
and finally 3c shows the acceleration. The graphs in 
magenta color correspond to Matlab-Simulink®, while 
the graphs in black color correspond to the Working 
Model®. For all three cases the graphs converge.

control algorithm

The algorithm presented in this paper is a robust tech-
nique for nonlinear systems that operate under condi-
tions of uncertainty. The sliding mode control reduces 
the sensitivity to the variation of uncertainties and ex-
ternal disturbances. 

time base generator

The time base generator equation (22) is written as a ti-
me function (21), where e(t) shows the error position,  
ė(t)represents the speed error, and α(t) is the time-
varying feedback gain. 
In addition, equation (21); being a non-forced time-
varying function allows the time base generator to be 
analyzed like error function, being possible to combine 
it with the sliding mode control law. 

ė + α (t) e = 0 → ė = – α (t) e  (21)

Where:

 (22)

In equation (22), ξ is a scalar variable as a function of 
time  ξ(t) whit a bell-shaped speed profile generated by 
the TBG as a time varying feedback gain. ξ(t) is defined 
as a first differentiable non-increasing function satis-
fying ξ(0) = 1 and ξ(tf) = 0, where tf is the convergence 
time from the initial to target position. The dynamics of 
TBG will be used for determining the function of con-
vergence time and is defined as follows (Tsuji, 1995): 

 (23)

Where γ is defined as a function of the convergence ti-
me tf and β is a constant that determines the behavior of 
TBG and 0 < β < 1. From equation (23), ξ(t) has two equi-
librium points. Therefore, ξ(t) always converges stably 
to ξ(0), when an initial value of ξ is chosen as ξ (0) = 1 – ε 
using a small positive constant ε. 

 (24)

In Tanaka et al. (1998) a new trajectory generation 
method for an omnidirectional mobile robot has been 
proposed, equation (24) has been used to generate a 
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composite time scale, where the convergence times are 
defined according with β. Therefore, equation (24) re-
presents the convergence time, where Γ (·) is the Euler’s 
integral of the second kind (gamma function). When 
the parameter γ is:

 (25)

The system converges to the equilibrium point in tf. The 
speed profile    (t) satisfies    (0) and    (tf) = 0, and is bell-
shaped with the minimum value    (tf /2) = –γ4–β at  
t = tf /2.

From (22), α0 = 1 + ε, 0 < ε, << 1 y 0 < δ << 1

The time base generator must be defined by the de-
signer of the controller, such that ξ moves from 0 to 1 in 
finite time. The gain  α (t) is defined as α(tf) > 0, if tf is 
independent of the initial conditions. Therefore:

ξ(tf) = 1 → e(tf) = e (t0) δ
1+ε > 0 (26)

The trajectory ξ = ξ (t) ∈ C2 so as to ξ goes smoothly 
from 0 to 1, t = tf > 0, and ξ = ξ (t) is a bell-shaped deri-
vative of ξ such that   (t0) =    (tf) ≡ 0, we have: t = 0.5tf is 
the maximum value and for the second derivative we 
have:   (0.5tf) ≡ 0. Note that tf independent of any initial 
condition and hence can be made arbitrarily small in 
arbitrary finite time. Also note that the transient state is 
shaped by ξ(t) over time.   

Therefore, equation (27), (28) and (29) show that the 
desired trajectory is fulfilled.

 (27)

 (28)

 (29)

Where the parameters assigned to demonstrate the tra-
jectory are:

Now equations (27), (28) and (29) becomes the system 
(30).

α1 – α2 + α3 = 1

3α1 – 4α2 + 5α3 = 0

6α1 – 12α2 + 20α3 = 0

Then the system is solved, obtaining as a result: α1 = 10, 
α2 = 15, and α3 = 6  The time base generator is obtained 
with Matlab-Simulink®. 

The results are shown in Figure 3, the convergence 
time is 5 seconds.

Figure 3. a) ξ (t) position, b)    (t) speed trajectory and c) α gain

Figure 3 shows that the trajectories established in (21) 
and (22) are true, and this allows the mechanism to be 
taken from one point to another in a finite time. On the 
other hand, the α gain is responsible for bringing the 
error to zero in transient space in a finite time.

sliding mode control

The position control is proposed in the joint space; whe-
re q is the position and qd is the target position (Figure 
1). Therefore, the errors are:

e = q – qd (31)
 
ė =     –    d (32)

In this paper we introduce the TBG as a function of time 
(21) to the slip surface (33) with the intention of trap-
ping the system in the stable state and not allowing dis-
turbances, making the error smaller each time. 
Therefore, the sliding surface proposed for the control 
law is. 

S = ė + α(t)e (33)

Substituting errors of position (31) and speed (32) in sli-
ding surface (33), the new sliding surface can be written 
as:

S = (  –   d) + α (t)(q – qd) (34)

In Parra (2003) the sgn function is used to catch the 
error in the sliding surface, then the next equations ha-
ve been proposed:

Sq = S – Sd (35)
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Where Sq is the sliding surface in terms of Sd, where Sd 
represents the desired reference value. To bring the 
error to zero smoothy in transient we introduce Sd.

Sd = S(t0)exp–k (t – t0) (36)

In the equation (36), t represents the final time, t0 the 
initial time, k is a positive constant, S is the sliding sur-
face and S(t0) is the initial position and speed error 
when time t = t0 = 0s.

Therefore, the sliding mode control law can be writ-
ten as:

τ = – sgn (Sq) (37)

The control law that is applied is by sliding modes. The 
sgn function allows catch the error on the sliding surfa-
ce, however, the tanh function a smoother displace-
ment is obtained, which helps to reduce chattering in 
the motor.  

τ = tanh (Sq) (38)

Therefore, the equation (38) is the control law, however 
to achieve more robust control a PID is applied. The 
PID is defined in a general way in (39).

U(v) = kpe(v) + ki ∫ e(v)dv + kd (39)

Where kp, ki and kd are proportional gain, integral gain 
and derivative gain respectively. Therefore, the new 
law includes a PID + sliding surface with TBG is written 
as:

τ = – kpe – kd ė + kdSd – ki    (40)

Figure 4 shows the block diagram of the control algo-
rithm. The control law (40) was programmed in Mat-
lab-Simulink®, Figure 5 shows the feedback of the 
instantaneous position, in left is the function correspon-
ding to the TBG, also the dynamic model is showed. 
The block “engine” has the control law.

Figure 4. Diagram of the Matlab-Simulink software for joint 
position control with TBG

Figure 5. Diagram of the Matlab-Simulink software for joint 
position control with TBG

results

This section shows the results obtained by two joint po-
sition control tests. The tests consist of bringing the me-
chanism from one position to a desired position in a 
given time.

The time base generator applies the control law to 
synchronize the mechanism at the desired convergence 
time. The TBG only adjusts the α gain in the control al-
gorithm based on operator-specified time and does so 
in a transient space. The sliding surface makes the error 
converge more smoothly towards 0, the sliding surface 
has action in the transient space.

The simulations have been carried out in the Mat-
lab-Simulink® software, using the model in Figure 5.

test 1

The initial position of the mechanism is 0 rad and the 
objective is to move the mechanism to the desired posi-
tion of π/2, in a finite time of 3 seconds. The α gain is 
adjusted based on the desired convergence time. There-
fore, for this test the α gain has a constant value.

Table 2 shows the initial position, the desired posi-
tion and the simulation conditions. On the other hand, 
Table 3 shows the tuning gains in the controller and fi-
nally the graphical results are shown below.

Table 2. Simulation data for joint control in Matlab-Simulink. 
Test 1

Simulation parameters Value
Desired position (qd) π / 2
Initial position (q) 0 rad
Solver O de 4 (Runge-Kutta)
Convergence time (TBG) 3 s
Integration step 0.001

( )de v
dv

( )
0

( )
t

qt
tanh S t dt∫
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Table 3. Gains in the controller for joint position control in 
Matlab-Simulink. Test 1

Gains in the controller Value

Gain α in TBG 10.7

Gain k 15

Gain kd 12

Gain ki 0.001 kd

Gain kp (kd) (α)

Figure 6 shows the evolution of the movement descri-
bed by the mechanism, in the upper part the magenta 
line indicates the desired position, while the black line 
describes the change in position of the mechanism. 
Near second 3 a convergence between both lines is ob-
served. Three seconds was chosen as time of arrival at 
the desired position and based on this the alpha gain 
was calculated.

Figure 6. Plot of desired generalized variable position and initial 
position

Figure 6 also shows that the arrival at the desired posi-
tion does not present oscillations, as shown in some 
conventional PID controllers. This shows that vibra-
tions and inertial effects are eradicated with the algo-
rithm proposed in this article.

Figure 7 shows the speed profile of the movement 
performed by the mechanism to reach the desired posi-
tion in the proposed time. A bell-shaped speed profile 
has been showed, starting at time (t = 0) and gradually 
increasing until it reaches a maximum value at half the 
total movement time, at which point the speed gradua-
lly decreases until it reaches zero again.

The speed profile obtained shows that there is no 
over-acceleration at the beginning of the movement, 
thus demonstrating that the inertial effects have been 
canceled by the action of the control algorithm. On the 
other hand, the speed profile shows that the movement 
described by the mechanism is a smooth and precise 
one. During the travel time, no disturbances are obser-
ved in the speed curve, therefore, the external distur-
bances are also canceled by the control algorithm. 

Figure 7. Plot of the bell-shaped velocity profile described by the 
movement of the mechanism

Figure 8 corresponds to the behavior of tau in the mo-
tor, it can be seen how tau does not present chatter, 
which again shows that the inertial effects have been 
canceled by the control algorithm.

Figure 8. Engine tau plot

The Table 4 shows the results obtained in test. 

Table 4. Test 1 results

Parameters Value
Desired position π  / 2
Final position 1.56 rad.
Convergence time 3 s
Error - 0.0015
Maximum speed 0.98 rad/s
Maximum tau 0.765 kg/m

test 2

Test 2 is similar to test 1 with a change in some parame-
ters to verify the functionality of the control algorithm.

Table 5 shows the initial position, the desired posi-
tion and the simulation conditions, Table 6 shows the 
tuning gains in the controller and finally the graphical 
results are shown below.
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Table 5. Simulation data for joint control in Matlab-Simulink. 
Test 2

Simulation parameters Value
Desired position (qd) π
Initial position (q) π / 2
Solver O de 4 (Runge-Kutta)
Convergence time (TBG) 5 s
Integration step 0.001

Table 6. Gains in the controller for joint position control in 
Matlab-Simulink. Test 2

Gains in the controller Value

Gain α in TBG 6.4

Gain k 15

Gain kd 12

Gain ki 0.001 kd

Gain kp (kd) (α)

As in test 1, the result of the position graph is satisfac-
tory. The mechanism reaches the desired position in the 
stipulated time. There are no oscillations in the move-
ment, indicating that the inertial effects have been can-
celed (Figure 9).

Figure 9. Plot of desired generalized variable position and initial 
position

The speed profile observed in Figure 10 is in agreement 
with what was expected. A bell-shaped velocity profile 
has been shown, it starts at instant zero and ends at se-
cond number 5 in accordance with the time stipulated 
in TBG. Let us remember that α gain is adapted accor-
ding to the desired convergence time. The speed profile 
shows no vibrations or over acceleration.

Finally, Figure 11 shows the behavior of the tau, in 
the graph chattering is not observed. Table 7 shows the 
Test 1 results.

Figure 10. Plot of the bell-shaped velocity profile described by 
the movement of the mechanism

Figure 11. Engine tau plot

Table 7. Test 1 results

Parameters Value

Desired position π

Final position 3.142 rad

Convergence time 5 s

Error - 0.00155

Maximum speed 0.59 rad/s

Maximum tau 0.530 kg/m

conclusIons

A robust control algorithm is introduced to cancel the 
inertial effects and achieve a chatter-free control, the al-
gorithm has a sliding surface to ensure smooth conver-
gence of error to zero, and a hyperbolic trigonometric 
function has been applied to decrease chattering. A ti-
me base generator (TBG) has been applied to reach a 
desired position in a finite time, in addition to obtai-
ning a bell-shaped speed profile that ensures that over-
acceleration and oscillations are eliminated when 
reaching the desired position. Also, a PID controller is 
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added to make the algorithm more robust. The algo-
rithm can be adapted to any one degree of freedom me-
chanism. The bell-shaped speed profile suggests that it 
can be applied to robots that aim to simulate the beha-
vior of human limbs and to future research in the field 
of physical rehabilitation.
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