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Abstract

This paper introduces an innovative method for studying dynamic electrical signals through orthogonal base vector decomposition. 
This approach effectively harnesses the properties of an orthogonal basis, even amid noise, utilizing a generalized Fourier series fra-
mework to enhance understanding and accuracy. Central to this methodology is the principal component function, which enables 
the decomposition of pseudo-random noise and error functions based on both the correlation index and generalized Fourier approxi-
mated series. This paper presents compelling test applications that analyze synthetic harmonic and interharmonic signals, as well as 
a real measured signal using Chebyshev orthogonal polynomials, Legendre polynomial approximations, and Fourier series approxi-
mations. This method not only proves to be efficient with remarkable accuracy but also maintains a low computational burden, 
making it highly practical for real-world applications. By employing the correlation coefficient of the polynomials and function ap-
proximations, we provide a qualitative comparison that underscores the accuracy of signal synthesis against the traditional Fourier 
theory application. In conclusion, the insights and characteristics derived from this research empower the extraction of crucial modal 
component information on the propagation, attenuation, and velocities of the electrical signals under investigation. This advance-
ment holds significant promise for future applications in the field of electrical engineering.
Keywords: Orthogonal, vector, decomposition, harmonics, Chebyshev polynomial, Legendre functions, Fourier series.
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Introduction

The new current trends in electrical network technolo-
gy require for monitoring, control and protection of de-
vices based on power electronics, which has significantly 
increased harmonic pollution and power quality pro-
blems in the distribution network up to power levels 
(Taylor, 1999; Rehtanz, 2025; Taranto et al., 2025). 

This in turn, paradoxically, has also increased losses 
in distribution systems due to overheating of motors 
and transformers, malfunctions such as false tripping 
of protective equipment such as relays and circuit 
breakers, and even producing severe direct distortion 
of the electrical waveform (Plet, 2024).

Due to the technical relevance of the harmonic po-
llution problem worldwide, several international wor-
king groups have focused their efforts to understand 
the behavior of this phenomenon through its different 
stages of detection, measurement, control and elimina-
tion of dynamic electrical signals propagating in electri-
cal systems (European Standard EN50160, 1999; The 
Norwegian Directive on Quality of Supply, 2005; CI-
GRE WG. C4.07 Power quality indices and objectives, 
2004; Lines, 1999; IEEE 519-1992, 1993). As a result, se-
veral approaches based on classical Fourier and other 
signal processing-based techniques have been publis-
hed in the technical literature which in part has motiva-
ted to improve the identification, characterization and 
diagnosis of this particular problem (Arrillaga, 2003; 
Ribeiro et al., 2014; Bollen & Gu, 2006).

The increasing harmonic and interharmonic opera-
ting conditions of power systems cause current and 
voltage waveforms to continuously distort over time. 
Consequently, the applicability of Fourier-based tools 
is limited to a narrow range of power quality studies 
(Arrillaga, 2003; Ribeiro et al., 2014; Bollen & Gu, 2006). 
However, in electrical engineering, it is the cornerstone 
of many deterministic and heuristic techniques for li-
near systems and signal processing applications (Lathi, 
2005; Fourier, 1822; Uribe, 2024).

To overcome the limitations of Fourier-based tools, 
different orthogonal bases have been used, which have 
given rise to the generalized Fourier series (Lathi, 2005). 
One of the advantages of this proposed methodology is 
the possibility of extending the Fourier-based tools to a 
non-harmonic or interharmonic synthesis, different 
from the classical orthogonal basis formed only by sta-
tionary trigonometric functions (sines and cosines). To 
study this option, there are a large number of signal 
sets that can be used as orthogonal bases to form the 
generalized Fourier series (Lathi, 2005; Fourier, 1822; 
Abramowitz & Stegun, 1965; Zhang & Jin, 1996; MAT-
LAB Version: 9.13.0.2049777 (R2022b), 2025). In particu-
lar, in Mason & Handscomb (2003) and  Cai & Tak 
(2004) it has been shown that the Legendre and Chebys-

hev approximations are almost identical to the optimal 
minimax polynomial (which is the best possible poly-
nomial to minimize the maximum deviation from the 
real signal among all existing polynomials of the same 
order). In addition, Chebyshev polynomials have an 
advantage over Legendre polynomials because the po-
sitions of their zeros are known analytically and are ea-
sier to calculate. This mathematical advantage opens 
new possibilities of potential applications for the reali-
zation of signal synthesis with low complexity or com-
putational effort. This represents a relevant feature that 
allows extending this technique for advanced diagnos-
tics and harmonic control of dynamic equipment such 
as wind generators, solar panels or motor vehicle batte-
ries that use power electronics.

Finally, the main contribution of this article is to pre-
sent an analysis method for testing real electrical noisy 
signals obtained by direct measurement with digital 
phosphor oscilloscope from the properties of the ortho-
gonal vectors of a generalized function or series based on 
Fourier, Chebyshev and Legendre polynomials.

Fundamentals of Fourier Theory 

A sinusoidal electrical signal with frequency ω0 magni-
tude C and phase θ can be decomposed into the fo-
llowing two sinusoidal signals of the same frequency as 
shown in Figure 1a (Lathi, 2005):

(1)

Where ω0 = 2πf is the angular frequency (f), t is time 
domain variable and the coefficients are a = cos θ and  
b = − sin θ.

Figure 1. a) Two sinusoids additive property, b) Vector 
projection with error component (Lathi, 2005).

The Fourier series can be obtained extending the analy-
sis for “n” vector components on both left- and right-
hand sides of (1) having:

(2)
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Where the trigonometric coefficients of (2) are easily 
calculated with:

(3)

(4)

and

(5)

for n = 1, 2, 3, ...
Approximation (2) is known as the Fourier synthesis or 
in the case of the left hand-side as the compact trigono-
metric series arrangement for a complete period of the 
signal (Fourier, 1822; Lathi, 2005):

(6)

Where:

(7)

and T0 = 2π / ω0.

Signal comparison fourier projection coefficients

When a real signal or a vector index comparison bet-
ween other two vectors is required, or as in the case of 
evaluating the magnitude of two vectors, the correla-
tion coefficient can be effectively used. Consider the fo-
llowing relation for approximating vector f in cx as 
shown in Figure 1b with a considerable error projection 
of e (Lathi, 2005):

f ≅ cx + e		 (8)

and considering that when the error signal, or the vec-
tor projection along axis x, is the smallest, in this sense, 
we can substitute the value of the cosine function bet-
ween both vectors as follows (Lathi, 2005):

c|x| = |f|cos θ	 (9)

Where c is a scalar, and |x| is the vector length and cos θ 
is the angular function between both vectors. By multi-
plying both sides of (9) by the magnitude of x, we can 
identify the correlation coefficient as follows (Lathi, 
2005):

|f||x|cos θ = c|x|2 =  f · x		 (10)

or

(11)

Where the inner product for the real signal case is defi- 

ned by f (t) · x (t) =       f (t)x(t)dt inside the interval (t1, t2).

If we consider that the vector x can be approximated 
with function cos(nω0t), then we obtain the following 
expression:

(12)

which is the corresponding coefficient in (4) of (2) for  
n = 1, 2, 3 ... Similary, the corresponding coefficient (5) 
of (2) is obtained in the case of x ≅ sin (nω0t) is approxi-
mated. Which is the case of the electrical signals when 
forming an stationary base related to the Fourier theory 
(Arrillaga, 2003).

Normalized correlation property

In the previous subsection, Eq. (11) shows that c can be 
considered as a quantitative measure of similarity bet-
ween f and x. Or as a signal comparison expression bet-
ween two signals. This similarity measure c is better 
known as the non-normalized correlation coefficient 
and, from (10), it observes that c = cos (θ), is ranging 
between, but expression (11) can be normlized with res-
pect the unitary value of magnitude if we add the term 
1/√EX in the denominator of (11):

−1 ≤ c ≤ 1	 (13)

By using the same argument in defining a similarity in-
dex for signals, a more general criterion based in c inde-
pendent of the energy (size) of f(t) and x(t) is given by, 
(Lathi, 2005):

(14)

Where Ef =        f 2 (t) dt is the energy of f (t), and Ex is the  
correponding expression to x(t), and can be extended to 
the entire time interval from −∞  to ∞. 
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Orthogonal properties of generalized-fourier

To perform a numerical analysis of a signal there is a 
large number of orthogonal signal sets which can be 
used as a reference basis of projection for another sig-
nals better known as the generalized Fourier-series (La-
thi, 2005; Fourier, 1822). Some of the most often used 
signal sets to approximate signals in electrical enginee-
ring applications are the sinusoid or exponential 
functions. Other kinds of signal sets, less used in the 
electrical engineering area are based on algebraic poly-
nomial extensions or on direct function approximations 
or by using interpolants. Some of these orthogonal po-
lynomial bases are Chebyshev, Laguerre, Jacobi and 
Hermite. To approximate functions we also have Le-
gendre, Walsh, Bessel and Kelvin series solution (Bollen 
& Gu, 2006; Lathi, 2005; Fourier, 1822; Abramowitz & 
Stegun, 1965; Zhang & Jin, 1996).

In Mason & Handscomb (2003) it has been shown 
that the Chebyshev approximation is almost identical 
to the optimal minimax polynomial problem which re-
quires low computational cost than another traditional 
method. Indeed, in (Mason & Handscomb, 2003) the 
Chebyshev polynomials have been used as a basis for 
approximating and indexing d-dimensional trajectories 
of different type of signal applications.

Thus, a methodology based on the orthogonal pro-
perties of one of the base Fourier generalized series 
form can be used to explore the signal properties for the 
analysis of electrical engineering harmonic and inter-
harmonic signals. For the analysis presented in this pa-
per an application of the first and second order of 
Chebyshev function polynomials and the Legendre ap-
proximate functions has been implemented in a MAT-
LAB platform in a generic PC (MATLAB Version: 
9.13.0.2049777 (R2022b), 2025).

A- Chebyshev polynomial of the first kind

The Chebyshev polynomial of the first kind is descri-
bed in Abramowitz & Stegun (1965) and Zhang & Jin 
(1996) as:

Tn (x) = cos(n · cos−1x)	 (15)

for all x ∈ [-1, 1].
As an example, for three successive orthogonal po-

lynomials the recurrence relations are:

T0(x) = 1, T1(x) = x

and so, on:

Tn+1 (x) = 2xTn(x) − Tn−1 (x)		  (16)

Moreover, the Chebyshev polynomials of the first kind 
are orthogonal on [−1, 1], with respect to the weight li-

near function w(x) = 1/            , if their inner product sa-
tisfies:

Where we obtain:

(17)

Thus, a set of coefficients can be calculated following 
the same principle of the correlation index as in (10) 
with:

(18)

And the synthesis of the orthogonal function can be 
better defined inside [−1, 1] through (Abramowitz & 
Stegun, 1965; Zhang & Jin, 1996; Lathi, 2005):

f (x) ≈ (1/2) C0T0(x) + C1T1(x) +...+CnTn(x) 	 (19)

B- Chebyshev polynonial of the second kind

The second kind of Chebyshev polynomials are a set of 
formulations similar to the first one above first state-
ment given by (Abramowitz & Stegun, 1965; Zhang & 
Jin, 1996):

(20)

Where its direct numerical implementation can be ob-
tained conveniently from the following recurrence rela-
tion, (Abramowitz & Stegun, 1965; Zhang & Jin, 1996):

U0(x) = 1      U1(x) = 2x

and:

Un+1(x) = 2xUn(x) − Un−1 (x)            	 (21)
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In addition, the Chebyshev polynomials as (21) are or-
thogonal on [−1, 1], with respect to the weight w(x) = 
            , only if their inner product satisfies (18).

A similar set of coefficients can be calculated with 
(11) using the following (Abramowitz & Stegun, 1965):

                       n = 1, 2, 3, ...     (22)

The synthesis of the approximated function is given by 
the following orthogonal polynomial inside [−1, 1] 
which has been implemented here in MATLAB (MAT-
LAB Version: 9.13.0.2049777 (R2022b), 2025) (Abra-
mowitz & Stegun, 1965):

f (x) ≈ C0U0(x) + C1U1(x) + ... + CnUn(x) 	 (23)

C- Legendre function approximation

The Legendre functions or polynomials are described 
conveniently through the Rodrigues’s formula for an 
integer degree as, (Abramowitz & Stegun, 1965):

	 (24)

for all x ∈[‒ 1, 1].
For the numerical implementation in (MATLAB 

Version: 9.13.0.2049777 (R2022b), 2025) is better to fo-
llow the recursive relation, (Abramowitz & Stegun, 
1965):

(25)

where:

P0(x) = 1 and P1(x) = x

By using (11), the vector coefficients for the series ap-
proximation are given by Abramowitz & Stegun (1965):

(26)

For n = 1, 2, 3 ...  
And the Fourier-Legendre series solution defined 

inside the range [−1, 1] for an arbitrary continuous 
function f(x) is given by Abramowitz & Stegun (1965):

(27)

Harmonic electrical signals orthogonal sets

Classical harmonic analysis with applications in electri-
cal engineering has been performed for many years ba-
sed on The Fourier Theory (Arrillaga, 2003; Fourier, 
1822). In common electrical engineering practices, the 
assumption that the utility supply voltage can be trea-
ted as a pure harmonic sinusoidal signal considerably 
simplifies the system modelling problem, as solving it 
through a phasor equivalent model can result in a much 
simpler one. However, for a non-balanced electrical 
equivalent circuit model or a non-linear problem, the 
traditional single sinusoidal approach sometimes 
yields a numerically inefficient or inaccurate solution.

This article explores the properties and characteris-
tics of the orthogonal decomposition of two types of 
electrical signals: one synthesized in MATLAB (harmo-
nic and interharmonic) and the other a real voltage sig-
nal captured by direct measurement at the output of an 
uninterruptible power supply UPS using a Tektronix 
DPO 4104 digital oscilloscope.

In the case study of the signal type synthesized in 
MATLAB (one harmonic and one interharmonic con-
trol signal), uniformly distributed pseudo-random noi-
se was added using the Mersenne Twister generator 
with seed 0 (MATLAB Version: 9.13.0.2049777 (R2022b), 
2025).

1st Test harmonic signal (Control signal) 

According to recommendations in the IEEE 519-1992 
standard, a test harmonic noise signal is implemented 
numerically over 12 periods of time (200 milliseconds). 
The voltage-simulated electrical signal has a power fre-
quency of f = 60 Hz and 754 time-samples, using a 
Nyquist sampling rate that is twice the highest frequen-
cy present in the signal (fs = 2×5ω0), with ω0 = 2πf. This 
implementation was conducted in MATLAB version 9.

Uribe previously documented a comparable test 
signal in 2024, which is quantitatively implemented in 
the following expression. This expression was determi-
ned to be the control signal because the frequencies are 
clearly evident in each sinusoidal signal argument, for-
ming the fundamental, second, and third harmonics, 
respectively.

v(t) = sin(ω0 · t) + 0.50 * sin(2ω0 · t) +...

… +  0.30 * sin(5ω0 · t) + 0.1 * randn (size (t))	 (28)
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The synthesized voltage signal in (28) and its estimated 
bar plot spectrum sequence, synthesized with 65 series 
terms according to the Fourier Theory (FFT, Lathi, 
2005), are depicted below in Figures 2 and 3, respecti-
vely.

As illustrated in Figure 3, the synthesized voltage 
signal exhibits a high harmonic and pseudo-random 
noisy levels along a normalized harmonic axis (dimen-
sion-less) concerning the fundamental frequency of f= 
60 Hz, which is analogous to the frequency provided by 
the government utility power supply voltage (MAT-
LAB Version: 9, 2025).

The predicted magnitude of the harmonics aligns 
precisely with the values outlined in expression (28), a 
calculation that was executed in a computer processing 
time of 0.00526820 seconds (Uribe, 2024; Fourier, 1822).

The additive pseudo-random noise of signal (28) is 
estimated for verification of the accuracy in this paper 
with the signal-to-noise ratio (SNR), the total harmonic 
distortion (THD) and the signal to noise and distortion 

ratio (SINAD) of the signal defined as (Arrillaga, 2003; 
Bollen & Gu, 2006):

(29)

(30)

(31)

Where Pfund is the power of the fundamental component 
of v(t) in (28), Pharm is the power of the harmonic com-
ponents in (28) and Varnoise is the variance of the addi-
tive noise of 0.1 (Ribeiro et al., 2014; Bollen & Gu, 2006).

1010 log fund

noise

P
SNR

Var
 

= ⋅  
 

1010 log harm

fund

PTHD
P

 
= ⋅   

 

1010 log fund

harm noise

P
SINAD

P Var
 

= ⋅  + 

Figure 2. Fourier synthesis with 65 
components of the test signal v(t) in (28).

Figure 3. Normalized harmonic content 
for the test voltage v(t) signal in (28) using 
Fourier series.
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Table 1 specifies the analytical definitions for the signal 
distortion and noise parameters taken from the direct 
implementation of (29)-(31) of v(t) and also for compa-
rison through the computing solution of MATLAB, 
from which one can see that both results are in good 
agreement.

The initial calculations were obtained using an HP 
Compaq 6200 Pro MT personal computer (PC) with 
Intel(R) Core (TM) i7-2600 CPU @ 3.40GHz RAM 8.0GB, 
Operative system 64bits, Windows 7 Professional, run-
ning MATLAB (MATLAB Version: 9.13.0.2049777 
(R2022b), 2025).

Table 1. Comparison of the SNR, THD and SINAD of test base 
signal v(t) in (28).

Analytical definition MATLAB estimation
SNR 17.7135 16.9897
THD − 4.5210 − 4.6852
SINAD 4.3651 4.4370

The Chebyshev polynomial of the first kind has been 
implemented as an evidence of the accuracy of the se-
ries approximation. Figure 4 shows the resulted synthe-
sis using 200 polynomial terms of Chebyshev of the 
first kind using (18) and (19), while Figure 5 shows the 
magnitude of the harmonics bar plot sequence synthe-
sized according to the Fourier Theory for the voltage 
signal approximated with Chebyshev series 1. The 
achieved accuracy is very high obtained in an elapsed 
computer processing time of 0.06536250s, only.

The Legendre series approximation in (26) and (27) 
has been implemented here with 187 terms for the har-
monic test signal v(t) in (28), which results are shown in 
Figure 6 for the time domain approximation and in Fi-
gure 7 for the magnitude of the harmonic content accor-
ding to the Fourier Theory for the voltage signal 
approximated with Legendre series.

The achieved accuracy of the Legendre series ap-
proximation is also very high obtained in an elapsed 
computer processing time of 0.05555610s.

Figure 4. Chebyshev synthesis with 200 
components of the test signal v(t) in (28).

Figure 5. Normalized harmonic content 
for the test voltage v(t) signal in (28) using 
Chebyshev 1 series.
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As can be seen here, in the study case of the harmonic 
signal in this paper section, the results obtained with 
the Chebyshev polynomials and the Lagrange series 
are very similar in magnitude and frequency to the har-
monic content shown in Figure 5 and 7, with respect to 
the Fourier series solution in Figure 3 as expected, res-
pectively.

The qualitative analysis as a function of harmonic 
content allowed us to know, the minimum number of 

terms needed to construct the harmonic spectrum of 
each approximation by observing the magnitudes of 
the harmonics corresponding to (28) as shown graphi-
cally in Figures 2, 4 and 6.

It should be noted that the test conditions in this sec-
tion were performed in the presence of pseudo-random 
noise, in this case numerical, but in resemblance to the 
noise situation present in the utility power supply vol-
tage signal.

Figure 6. Legendre synthesis with 187 
components of the test signal v(t) in (28).

Figure 7. Normalized harmonic content 
for the test voltage v(t) using 187 terms of 
Legendre series.
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2nd Test inter-harmonic signal

In the second case of analysis, an interharmonic signal 
is synthesized numerically in MATLAB® according to 
indications in IEEE 519-1992, 1993. The signal is simula-
ted over 12 periods of time (200 ms) and has a funda-
mental frequency of f = 60 Hz, with 1,508 time-samples. 
The Nyquist sampling rate of fs = 2*10*ω0, with  
ω0 = 2πf, is used to generate the signal. The following 
mathematical expression with the coefficients determi-
ned is used to represent the signal:

v(t) = sin (ω0 · t) + 0.50 * sin (3 ω0 · t) + …

…+ 0.30 * sin (5.35 ω0 · t) +0.1 * randn(size(t))              (32)

As illustrated in Figure 8, the second test voltage signal 
v(t) was implemented in accordance with equation (32). 
The Fourier series approximation is also derived from 
this signal, as illustrated in the same figure. This calcu-
lation utilizes 66 terms and requires a processing time 
of only 0.00752920 seconds. This approximation has 
been shown to be notably effective, even when confron-
ted with a substantial level of pseudo-random noise 
from the high signal source. This effectiveness is illus-
trated in Table 2 for three different signal-to-noise and 
distortion parameter ratios: SNR, THD, and SINAD.

The magnitude of the harmonics according to the 
Fourier Theory of the fundamental and the third com-

ponents of the voltage signal in (32) and the inter-har-
monic in 5.5 of the normalized scale of frequency (f/60) 
are shown with high accuracy with the implemented 
Fourier series in Figure 9.

The Chebyshev polynomial approximation has 
been implemented for the inter-harmonic voltage v(t) 
signal in (32) using 220 terms in 0.29311260s of compu-
ter processing time.

Figure 10 shows the time domain accuracy of the 
polynomial Chebyshev series approximation for the 
2nd voltage test signal in (32). In addition, the magnitu-
de of the harmonics voltages v(t) according to the Fou-
rier Theory along a normalized frequency (f/60) is 
shown in Figure 11 for this 2nd test signal. Also, the 
presence of noise is evidenced in the bottom of the plot, 
showing values very close to zero of the frequency 
magnitude scale. This is known as a part of the frequen-
cy leakage dispersion. In this case, it doesn’t represent 
an obstacle or a numerical problem for the harmonic 
identification process result.

Figure 12 shows the results for the Legendre 
function approximation has also implemented for this 
2nd test case of inter-harmonic voltage v(t) signal with 
220 components in 0.30170290s of computer processing 
time. The magnitude of the fundamental and third har-
monics and of the inter-harmonic of 5.5 frequency com-
ponents are evidenced in Figure 13 in bar plot along a 
normalized frequency (f/60) axis with high accuracy. It 
can be seen from Figures 12 and 13, that the accuracy of 

Table 2. Comparison of the SNR, THD and SINAD of the second test base 
signal v(t) in (32).

Analytical definition MATLAB estimation
SNR 9.7226 16.9897
THD -6.1610 -4.6852
SINAD 4.5893 4.4370

Figure 8. Fourier synthesis with 66 
components of test signal v(t) in (32).
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Legendre series approximation in (26) and (27) applied 
to the identification of inter-harmonic electrical signals 
is high for electrical signal applications. 

For the case of analyzing interharmonic electrical 
signal, it can be seen that the above approximations 
presented excellent results in a very short computer 

processing-time. However, in both time and harmonic 
type of plot for each one technique there is a kind of 
frequency leakage dispersion, due to the presence of 
pseudo-random noise in the voltage test signal v(t). For 
harmonic analysis standard applications, this is not 
very significative for study of harmonics propagation 

Figure 9. Normalized harmonic content 
for the test voltage v(t) signal (32) using 
Fourier series.

Figure 10. Chebyshev 1 synthesis with 
220 components of test signal v(t) in (32).

Figure 11. Normalized harmonic content 
for the test voltage v(t) using Chebyshev 
1 series.
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or for electromagnetic induction problems (IEEE Re-
commended Practice and Requirements for Harmonic 
Control in Electric Power Systems, in IEEE Std 519-2014 
(Revision of IEEE Std 519-1992), 2014).  

3rd Test analysis of actual harmonic signal

A harmonic voltage test signal measurement has been 
obtained in our LAB using a DPO4104 Tektronix digital 
phosphor oscilloscope with a massive storage sampling 
rate of 5 GS/s on all of the 4 channels and 1 GHz of 
bandwidth, ideal for applications of investigation of the 
transient phenomena and spectral analysis as the one 
illustratively shown in Figure 14 (DPO 4104 Digital 
Phosphor, Oscilloscopes Tektronix 4000 Series Digital).

To test the here proposed harmonic analysis method 
we analyzed the voltage response of an uninterruptible 
power supply unit (UPS) shown in Figure 15 with 127 V 

voltage amplitude in 40 ms of duration recorded with 
100 k samples using a frequency sampling of 25 kS/s.

Figure 12. Legendre synthesis with 220 
components of test signal v(t) in (32).

Figure 13. Normalized harmonic content 
for the test voltage v(t) using Legendre 
series.

Figure 14. Digital phosphor oscilloscope (DPO 4104 Tektronix) 
for measuring high-speed electrical signals and massive storage 
as transients and harmonic signals.
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Power Supply Unit Response (UPS) at a charge centre

To test the here applied methodology, the measured 
voltage signal in Figure 15 is synthesized with the Fou-
rier, Chebyshev 1 and Legendre series techniques with 
high accuracy as can be seen in Figure 16 with pro-
nounced Gibbs phenomenon in each of the discontinui-
ties of the actual signal (Lathi, 2005). However, in this 
case of analysis this phenomenon does not represents a 
numerical problem. 

However, a filtering operation as the convolution 
FIR filter of 3rd or 4th order can easily significative de-
crease these oscillations (Lathi, 2005).

Figure 17 shows the first 10th harmonic information 
data window according the Fourier Theory for the ac-
tual voltage signal shown in Figure 15. The magnitude 
of the profile of the complete spectrum can be seen in a 
solid red line, while the bar plot of the harmonics pre-
sent in the actual signal are evidenced at the bottom of 

the plot. It can be mentioned here, that both set of infor-
mation are in a good agreement each other as can be 
shown.

In appearance, in Figure 17 there is a 4-sample delay 
with respect to the normalized frequency of the voltage 
power supply of 60 Hz in the horizontal axis. It is pos-
sible that the frequency leakage effects occur when the 
inter-harmonics are predominant, over the simple har-
monics range components, as a part of the multiple fre-
quency contain of the square wave form of the signal 
(Lathi, 2005). 

Thus, the frequency leakage turns the Fourier 
synthesis in a notable loss of information with respect 
to the actual signal. In the authors’ experience the fre-
quency leakage occurs around the main sampling fre-
quency of the signal (IEEE Recommended Practice and 
Requirements for Harmonic Control in Electric Power 
Systems, in IEEE Std 519-2014 (Revision of IEEE Std 
519-1992), 2014).

Figure 15. Voltage perturbation 
measurement of an uninterruptible.

Figure 16. Synthesis of a UPS 
measurement voltage signal response.
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The behavior described in Figure 16 shows that the Ge-
neralized-Fourier orthogonal approximations of 
Chebyshev 1 and Legendre can achieve into a more ac-
curate solution, Table 3 shows the synthesis parameter 
information for the case of treating with a UPS voltage 
signal containing harmonic and inter-harmonic compo-
nents. However, more research has to be made in this 
regard to fully support this claim.

The dynamics of certain types of electrical signals 
obtained in cases by direct measurement can be analy-
zed through their time evolution by means of series of 
generalized Fourier, Chebyshev and Legendre 
functions with high accuracy and in a reduced compu-
tational processing time. The indices in the approxima-
tion in the sense of energy and correlation as shown in 
Table 3 confirm the accuracy on the obtained results in 
this work and can be extended to any other physical 
signal harmonic analysis.

As a power quality index, an abstraction of the esti-
mated power spectrum of the voltage measurement 
signal in Figure 15 is shown in Figure 18 using the Fou-
rier, Chebyshev, and Legendre approximations. The 
SNR factor estimates the relationship between the si-
nusoidal portion of the signal and the noise in decibels 
by calculating the ratio of its squared magnitude sum-

med with that of the noise present in the signal. Accor-
ding to the obtained values of maximum difference of 
the SNR indices (±0.27 dB) and in the Cn correlation (14) 
of 0.0215, it is possible to verify that the technique deve-
loped here has a high precision in the application deve-
loped here for electrical signals.

Although the technique of function synthesis using 
generalized Fourier series approximations is a very 
promising idea due to the high levels of accuracy achie-
ved in numerical signal processing implemented in 
MATLAB with a few harmonics, the same results are 
not achieved when studying real measurement signals. 
Most real signals obtained by measurement exhibit 
nonlinear and nonstationary behavior, eliminating any 
opportunity for obtaining a good representation using 
a Fourier series, even when using many harmonics in 
the series.

When studying electrical signals where the funda-
mental component (60 Hz) is known as a reference, the 
case can be analyzed in parts or sections of the signal. 
This technique is better known as the Fourier transform 
applied through short time windows, where the rela-
tionship between sampling time and frequency must 
comply with the Heisenberg uncertainty principle (Ri-
beiro et al., 2014; Bollen & Gu, 2006).

Figure 17. Normalized Fourier harmonic 
components (blue color) and distorted 
magnitude estimation (red color).

Table 3. Actual signal synthesis parameters information.

Signal energy
Correlation

-Cn-  
(14)

CPU-time

(s)
Series terms Samples

Actual signal 6.20000912×103 5979
Fourier series 6.03822315×103 0.98691700 0.08766860 250 5979

Chebyshev series 5.80427432×103 0.96778333 4.29733480 250 5979
Legendre series 5.84760453×103 0.96542952 5.13245030 250 5979
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Figure 18. Power harmonic estimation 
and SNR for the first six components: 
a) Fourier approximant, b) Chebyshev 
approximant and c) Legendre series 
approximant.

a)

b)

c)
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Conclusions

In this paper a method to study dynamic electrical sig-
nals with noise by means of orthogonal basis vector de-
composition was presented. By exploring the properties 
of the generalized Fourier, Chebyshev or Legendre se-
ries it is possible to synthesize with relatively few terms 
and in a short computational time accurate result. The 
approach presented here effectively exploits the pro-
perties of an orthogonal basis, even in the midst of noi-
se, using a generalized Fourier series framework to 
improve understanding and accuracy. Central to this 
methodology is the principal component function, 
which enables the decomposition of noise and error 
functions based on both the correlation index and the 
approximate generalized Fourier series. We present 
compelling test applications analyzing harmonic, inter-
harmonic, and real measurement signals using ortho-
gonal Chebyshev polynomials, Legendre polynomial 
approximations, and Fourier series approximations. 
This method not only proves to be efficient with re-
markable accuracy, but also maintains a low computa-
tional burden, which makes it very practical for 
real-world applications. By employing the correlation 
coefficient of polynomial and function approximations, 
we provide a qualitative comparison that highlights the 
accuracy of signal synthesis versus traditional Fourier 
theory.

In conclusion, the insights and features derived 
from this research allow us to extract crucial informa-
tion about the propagation modal components, atte-
nuation and velocities of the electrical signals under 
investigation. This advance is very promising for future 
applications in this field.
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