
Abstract

A pole placement method was applied in feedback numerical control of an intelligent flexible beam. Finite element techniques were 
used for the discretization of the continuous beam and from the corresponding state space representation, control gains were obtai-
ned by the pole allocation method for the appropriated modal control. The results obtained from numerical simulation show that 
control of the first three vibration modes is efficiently   accomplished with a single input control. 
Keywords: Modal structural control, smart flexible structure, pole allocation, single input control, active control.

Resumen

Un método de colocación de polos se aplica para el control numérico realimentado de una viga flexible. Técnicas de elemento fini-
to se usaron para la discretización de la estructura continua y a partir de la correspondiente representación de espacio de estados, 
las ganancias de realimentación se obtuvieron por el método de colocación de polos para el control modal. Los resultados obtenidos 
de la simulación numérica muestran que el control de los primeros tres modos de vibración se pueden realizar de manera efectiva 
con un control de entrada simple.
Descriptores: Control modal estructural, estructura flexible inteligente, colocación de polos, control entrada simple, control activo.
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IntroductIon

Lightweight flexible structures are increasingly being 
used in aerospace, automotive, construction, manufactu-
ring, robotics, and other industries. Consequently, these 
structures are more sensitive to dynamic perturbations 
and the need for vibration control becomes crucial. Mo-
reover, the requirement for simultaneous multimodal 
control increases because it is insufficient to just control 
the first dominant mode of light and flexible structures.

In the past few decades, active control of flexible 
structures using discrete or distributed actuators has 
been investigated to improve structural performances 
(Premount, 2002). These structures, with embedded or 
bonded sensors and actuators, are known as smart 
structures because their intrinsic ability to sense and 
control unwanted mechanical vibrations. Moreover, 
piezoelectric sensors and actuators have proven to be 
practical for structural control applications (Premount, 
2011). These piezoelectric elements have been effecti-

vely applied in the closed loop control of different acti-
ve structures including beams, shafts, plates, and 
trusses. Some of the attributes which have made pie-
zoelectric actuators appealing for active control include 
the large useful bandwidth, the efficient conversion of 
electrical to mechanical energy, and the mechanical 
simplicity of the actuator with just a small extra weight 
added to the structures (Dosch et al., 1992).

Modal control is a preferred method in active con-
trol of flexible vibrating structures because it resembles 
the basic and intuitive notions of single degree of free-
dom systems. Modal control potential resides on 
mathematical matrix decoupling transformations (In-
man, 2011). One of the simpler ways to reach modal 
active control is the pole placement method. In this con-
trol strategy, a designer has the flexibility to place the 
poles (eigenvalues) at the proper location for achieving 
the desired response.

Several researchers have applied a pole placement 
control scheme to suppress the unwanted vibration of 
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flexible beam structures. Among them, Zhang and Li 
(2012) and Kumar and Khan (2007) have developed an 
adaptive pole placement technique in active vibration 
control. Zhang and Li (2012) studied the performance 
of adaptive pole placement control in a cantilevered 
beam. The robustness of the proposed controller was 
analyzed under various mechanical, electrical, thermal 
conditions. The investigation was done through simu-
lation where a model was developed using the finite 
element method (FEM). Simulation results showed that 
the adaptive pole placement control is effective in con-
trolling the vibration of the cantilever beam at various 
thermal conditions. Kumar and Khan (2007) proposed 
an adaptive pole placement controller for active vibra-
tion control of an inverted L structure. Experimental 
results have shown that the proposed controller is 
effective in suppressing the unwanted vibration caused 
by external force.

Pole placement method was applied with success 
by Bu et al. (2003) for control of the first dominant mode 
of a beam. A linear pole placement controller was de-
signed by Sethi and Song (2005) for multimodal vibra-
tion suppression of a smart flexible beam by using 
piezoceramics as actuators and sensors. Experimental 
and numerical results demonstrated the effectiveness 
of multimodal vibration control of the first three modes 
of the structure. 

The present work uses piezo-ceramic actuators and 
sensors for multimodal active vibration control of a 
flexible cantilevered beam, by using a single-input con-
trol, via feedback control. Control design of flexible 
structures depends on precise modeling of the system 
dynamics. Thus, finite element techniques are used to 
obtain a discrete model from the continuous beam dy-
namic model, leading to the equation of motion of the 
structure.  This equation consists of a finite system of 
temporal second order coupled differential equations 
which, along with the sensor output equation, repre-
sent the discrete equation of motion of the smart struc-
ture. From the corresponding state space representation, 
modal control design of the smart structure is obtained 
by the pole allocation method within the feedback con-
trol approach.

dIscrete smart beam model

Consider a Bernoulli-Euler type beam, with equili-
brium equation given by

 (1)

along with appropriate initial and boundary condi-
tions. In Eq. (1), the parameters involved are

w = displacement response
E = elastic modulus of beam material
I = second moment of area of the beam cross section
ρ = mass density of the beam material
A = cross sectional area of the beam
Q = external forces applied to the beam, including  

control forces

Now, consider a smart beam consisting of flexible alu-
minum cantilever beam with surface mounted pie-
zoelectric sensor and actuator at the fixed end, as shown 
in Figure 1.

The external force input Q is taken as the sum of an 
external disturbance Qe, applied at the free end making 
the beam vibrate, plus a controlling force Qc. In this 
work Qe is considered null and free vibrations will only 
be produced by initial conditions

(2)

Finite element methods are used to obtain a discrete 
model of the beam equation with a finite number of de-
grees of freedom (DOF). By using 2-node Hermitian fi-
nite elements (2 structural DOF at each nodal point, 
displacement and slope), the equations of motion of the 
smart structure and the sensor output are given by Ban-
dyopadhyay et al. (2007)

 (3)

(4)

where M and K are the mass and stiffness n×n matrices, 
respectively, for a local composite piezoelectric element 
(beam  plus piezo-patches) of length lp, q is the vector of 
generalized displacements (displacements, w, and slo-
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Figure 1. Smart beam with piezoceramic sensor and actuator
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pes, ∂w/∂x), and    is the acceleration vector. The mass 
and stiffness matrix coefficients are obtained from

with ni the i-th shape function, and

(5)

the mass per unit length and the flexural rigidity of the 
composite piezoelectric beam element, respectively. 
Note that the mass and stiffness matrices M and K in 
the system (3) can be varied by changing the location of 
the piezo-patches on the beam and by varying the num-
ber of regular and piezoelectric beam elements. A regu-
lar beam element can be obtained by just setting tp= Ip= 0 
in Equations (5).

The sensor output is the sensor output voltage and 
is computed from

(6)

where n is the shape functions vector, Gc is the signal 
conditioning gain, q  is the velocity vector, and 

)( 2 s
b ttz += . The control force Qc produced by the ac-

tuator is

(7)

where V
a
(t) is the input voltage applied to the pie- 

zoelectric actuator and )( 2
ba ttz +

= .

the algebraIc eIgenvalue problem

Control forces are normally designed to modify the sys-
tem characteristics so as to produce a desired response. 
The object is to coerce the response to certain perturba-
tions to come close to zero asymptotically. The beha-

vior of a linear dynamical system is governed by its 
eigenvalues. In fact, the response approaches zero  
asymptotically if the real part of all the system eigenva-
lues are negative. The goal of feedback control is to 
adjust the open-loop system so that all the eigenvalues 
of the closed-loop system acquires negative real part. 
This is equivalent to controlling the system modes (mo-
dal control). Consequently, knowledge of the open-
loop eigenvalues of the system is critical. 

To establish the open-loop eigenvalue problem, the 
open-loop system is considered by setting Qe=Qc= 0 in 
Eq. (3)

(8)

In control theory is more convenient to work with the 
state equations. Hence, by introducing the 2n-dimen-
sional state vector

(9)

the state equations can be cast in compact form

(10)

where

(11)

is the 2n×2n coefficient matrix. The solution of Eq. (10) 
is

(12)

with λ a scalar and u a constant vector. Substituting Eq. 
(12) into Eq. (10), the algebraic eigenvalue problem is
obtained

(13)

Recalling that A is 2n×2n matrix, the eigenvalue pro-
blem can be stated as

(14)

where λi and ui are the eigenvalues and eigenvectors of 
A, respectively. Furthermore, the adjoint eigenvalue 
problem associated with AT is defined by
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(15)

Equations (15) can also be written in the form

(16)

Since their position relative to A, ui are called right eigen-
vectors of A and vj are known as left eigenvectors of A.

It is convenient to normalize the eigenvectors, such 
that the eigenvectors become biorthonormal

(17)

with δij the Kronecker delta.

Feedback control

The state equations and output equations in matrix 
form are

(18)

and 

(19)

respectively. For feedback control, the input u(t) takes 
into consideration the actual response of the system. 
When u(t) depends on the state of the system, then this 
case is called state feedback control, and

(20)

where G is known as the feedback gain matrix, or the 
control gain matrix.
Introducing Eq. (20) into Eq. (18) leads to

(21)

Control stability is governed by the eigenvalues of A-BG. 
The eigenvalues of A are known as open-loop eigenva-
lues (open-loop poles) and the eigenvalues of A-BG are 
known as closed-loop eigenvalues (closed-loop poles). 
Then, the object of linear feedback control is to ensure 
that the closed-loop poles lie in the left half plane of the 
complex plane, thus guaranteeing asymptotic stability.

From Eq. (21), the closed-loop poles depend on the 
control gains, that is, on the entries of the control gain 
matrix G. Two of the most widely used methods for 
computing control gains are pole allocation and opti-
mal control. In this work we concentrate on pole alloca-
tion method.

pole allocatIon method

As mentioned, the object of linear feedback control is to 
place the closed-loop poles on the left half of the com-
plex plane of the eigenvalues so as to ensure asymptotic 
stability of the closed-loop system. One method con-
sists of prescribing first the closed-loop poles associa-
ted with the modes to be controlled and then computing 
the control gains required to produce these poles. The 
algorithm for producing the control gains is known as 
pole placement.

The complexity of the procedure depends on the 
number of inputs. The number of inputs affects the de-
tails of the procedure in such a way that there are diffe-
rent algorithms corresponding to different cases. In this 
work we concentrate on the case of single-input con-
trol, and the following algorithm, originally proposed 
by Porter and Crossley (1972), was taken from the book 
by Meirovitch (1980).

For the case of a single input, the state equation (18) 
takes the form

(22)

where b is a constant 2n-vector and u(t) is the single 
control input. The open-loop eigensolution consists of 
the eigenvalues λi , and the right and left eigenvectors, 
ui and vi , i = 1, 2,…, 2n. The two sets of eigenvectors are 
assumed to be normalized, so that they satisfy the bior-
thonormality relations (17).

We consider control of m modes and assume that 
the control force has the form

(23)

where gj ( j= 1, 2, …, m) are the modal control gains. In-
serting Eq. (23) into Eq. (22), the closed-loop equation is 

(24)

where

(25)

and it is noted that
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so that the control given by Eq. (23) is such that the clo-
sed-loop eigenvalues and eigenvectors corresponding 
to the uncontrolled modes are equal to the open-loop 
eigenvalues and eigenvectors, respectively. It can be ve-
rified that the same is not true for the eigenvalues and 
eigenvectors associated with the controlled modes, j = 
1, 2,…, m.

Next, we denote the closed-loop eigenvalues and 
right eigenvectors of C associated with the controlled 
modes by ρj and wj ( j = 1, 2,…, m), respectively. But, 
because the open-loop right eigenvectors are linearly 
independent, they can be used as a basis for a 2n-vector 
space, so that the closed-loop eigenvectors can be ex-
panded in terms of the open-loop eigenvectors as fo-
llows

(27)

Recalling the biorthonormality relation (17), the closed-
loop eigenvalue problem can be written in the form

(28)

Moreover, letting

(29)

Eqns. (28) become

(30)

which are equivalent to 2n×m scalar equations

(31)

Solution of the above equations leads to the gains

(32)

Clearly, for gj to exist, it must be pj ≠0. If any one of the 
pj is zero, then the associated mode is not controllable. 
Finally, the control law is obtained by inserting Eq. (32) 
into Eq. (23).

numerIcal experIments

The smart beam was divided into 4 finite elements: one 
piezoelectric beam element (element 1 in Figure 2), and 
three regular beam elements (elements 2 to 4 in Figure 
2). The geometric and material properties of the smart 
beam components (Al beam, sensor, and actuator) are 
given in Table 1. The beam has one end fixed and one 
end free. The discrete 

model has 8 degrees of freedom (dof´s), 4 dof´s asso-
ciated with transverse displacements, and 4 dof´s asso-
ciated with slopes.

The physical properties of the flexible beam and the 
piezoelectric elements are given in Table 1. A Maple© 
code was written to implement the numerical model 
and the control algorithm. The open-loop eigenvalues 
of matrix A calculated by solving the eigenvalue pro-
blem (13) are shown in Table 2. If the first three lowest 
modes are to be controlled, corresponding to the eigen-
values λ1,2 = ± 311.09i ,  λ3,4 =  ± 1951.73i , and  λ5,6 =  ± 
5500.95i , then the closed-loop poles are obtained by 
placing the first three poles by an amount –2.0 into the 
negative real part, which corresponds to damping ra-
tios of 0.64, 0.10 and 0.04, respectively.  The closed-loop 
poles are shown in Table 3. It is necessary to mention 
that two additional values of pole displacement were 
considered, -1.0 and -3.0; however, according to nume-
rical results, and endorsed by the justification below, 
the displacement of -2.0 was selected to run the experi-
ments. Accordingly, it is essential to point out that pole 
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Figure 2. Finite element model of the smart beam
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placement is arbitrary as long as a necessary and suffi-
cient condition is satisfied. This condition is that the 
system be completely state controllable. Thus, in order 
to test state controllability, the 2n×2nr controllability 
matrix C is considered 

where n is the number of degrees of freedom, and r is 
the number of displaced poles. Then, the system is 
completely state controllable if C has rank n. For the 
case under study, n = 8, r = 6, and it is verified that C is 
a 16×96 matrix with 8 linearly independent columns 
which implies that rank(C) = 8. Consequently, pole allo-
cation can be arbitrarily done. However, there are some 
guidelines for choosing the locations of desired closed-
loop poles: If the closed-loop poles are chosen far away 
from the open-loop poles, the system will demand high 
control effort from the actuator; if the closed-loop poles 
are very negative, the system will be fast reacting, the 
signals in the system become very large, with the result 
that the system may become nonlinear; this should be 
avoided.

Using Eq. (32), the calculated gains corresponding 
to the located poles have the values

The control input u(t) is calculated by using Eqs. (20) or 
(23), where the gain matrix is given by

Accordingly, the closed-loop equation (Eq. (24)) can be 
stated, where C is given by Eq. (25). It is worth noting 
that vector b in (25) is calculated from Eq. (29), whereas 
pk is calculated from the expression

Finally, in order to obtain the transient response, the 
transition matrix approach is used. Thus, taking into 
consideration that the closed-loop equation

is subjected to the initial condition

then, the solution of the closed-loop equation is 

2 1n-=   c B AB A B A B

1 2 1141.59 141.09 , ;g i g g= + =

3 4 377.94 77.58 , ;g i g g= - - =

5 6 5166.50 165.56 ,g i g g= + =

184.62 77.11 60.31 49.44 0.5926 1.372 0.4259 0.3808

28.65 32.03 28.67 25.23 0.1321 0.0746 0.0863 0.2866

= - - - -

- -
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Table 1. Geometric and material properties of beam and piezoelectrics 

Geometric and material
parameters

Aluminum beam Piezoelectric PZT
 actuator/sensor

Length
Width
Thickness
Density
Elastic Modulus
PZT strain constant
PZT stress constant

lb = 0.3 m
b = 0.03 m
tb = 0.5 mm
ρb = 2700 Kg/m3
Eb = 70  GPa

lp = 0.075 m
b = 0.03 m 
ta = ts = 0.35 mm
ρp = 7700 Kg/m3
Ep = 193 GPa
d31 = 125×10-12 m/V
g31 = 10.5×10-3 Vm/N

Table 2. Open-loop eigenvalues

Eigenvalues

λ1,2    ± 311.09 i

λ 3,4
   ± 1951.73 i

λ 5,6    ± 5500.95 i

λ 7,8 ± 10852.67 i

λ 9,10 ± 20184.73 i

λ 11,12
 ± 32415.37 i

λ 13,14
 ± 51390.81 i

λ 15,16 ±84321.53 i

Table 3. Closed-loop poles                                
Eigenvalues Damping ratio

ρ1,2 -2.0 ± 311.09 i 0.64

ρ 3,4
 -2.0 ± 1951.73 i 0.10

ρ 5,6 -2.0 ± 5500.95 i 0.04

ρ 7,8 ± 10852.67 i -

ρ 9,10 ± 20184.73 i -

ρ 11,12
 ± 32415.37 i -

ρ 13,14
 ± 51390.81 i -

ρ 15,16 ±84321.53 i -
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where Φ(t) is the transition matrix given as the series 

Three cases are considered in which the initial condi-
tions are such that they incite free vibrations of the 
beam according to the first, second, and third vibration 
mode, respectively. The configurations of the three sets 
of initial conditions for the smart beam are represented 
in Figures 3a and c, with zero initial velocity. It is noted 
in these figures that the position of the piezo-actuator 
remained constant for the three experiments.

dIscussIon and analysIs oF results

In order to select the appropriated closed-loop pole 
allocation into the left half of the complex plane, three 
values of pole displacement were considered for first 
vibration mode only, -1.0, -2.0 and -3.0. According to 
numerical results, which are not showed here for space 
limitations, when the closed-loop poles are displaced 
by an amount of -1.0, the system is slow reacting with 
the vibration amplitude decaying to zero after 4 se-
conds, double the time than for -2.0, while the amplitu-
de of the control vector reduces to one half. On the 
other hand, when closed-loop-poles are displaced by a 
quantity of -3.0, the system is fast reacting with vibra-
tion vanishing after 1 second, but the amplitude of the 

control vector is raised more than two thirds of the am-
plitude corresponding to -2.0 displacement. This beha-
vior was expected according to the effects mentioned in 
the guidelines for choosing the locations of desired 
closed-loop poles cited in the previous section. Conse-
quently, closed-loop pole displacement of -2.0 was con-
sidered to be more representative for numerical 
simulation purposes.

Figure 4a shows the transient response of the free 
end of the beam when the first vibration mode is exci-
ted and a unit voltage is applied to the actuator, while 
Figure 4b displays the control vector. It is observed that 
when the poles are displaced by an amount of -2.0 the 
vibration vanishes after 2 seconds. Similarly, Figures 5a 
and b show the response of the free end of the beam 
and the control vector, respectively, when the second 
mode is excited and a unit voltage is applied to the ac-
tuator. Again, the vibration reduces drastically after 2 
seconds, however it is noted that some low amplitude 
vibration remains beyond this time; in addition, it is ob-
served that the magnitude of the control vector is larger 
for the second mode than for the first mode. Finally, 
Figures 6a and b illustrate the response of the free end 
of the beam and the control vector, in that order, when 
the third vibration mode is excited; a similar behavior is 
observed in the third mode as in the second mode, whe-
re some small amount of vibration remains after 2 se-
conds, while the magnitude of the control vector is not 
as larger as in the second mode.

The observed behavior of the flexible smart beam 
can be explained by noting that the actuator remains at 
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Figure 3. Initial configuration of beam: a) first mode, b) second mode and c) third mode
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w (lb , t)  (a)  u (t)  (b)

Figure 4. a) Transient response of the free end (x= lb) of the beam, first mode, 
b) control vector applied to the actuator

Figure 5. a) Transient response of the free end (x= lb) of the beam, second mode, b) control vector applied to the actuator

w (lb , t)  (a)  u (t)  (b)
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the fixed end for the three excited vibration modes, see 
Figure 2. This position corresponds to the highest strain 
along the beam for mode one, see Figure 3a, while the 
corresponding highest strain position for the beam in 
mode two is located at the middle of the span of the 
beam, Figure 3b, and for the beam in mode three there 
are two highest strain positions located at one-third 
and two-third of the beam length, Figure 3c. Conse-
quently, vibration attenuation is more effective in mode 
one since the actuator operates straight at the zone with 
the highest strain, influencing more directly in beam 
bending with a small control effort. On the other hand, 
for vibration in mode two and three, the higher strains 
positions do not coincide with the position of the actua-
tor. Therefore, the actuator works at a zone without a 
high strain, manipulating less indirectly beam bending 
with a higher control force.

conclusIons

The pole allocation method was applied in feedback vi-
bration control of a smart continuous cantilevered 
beam structure. Finite elements techniques were used 
to obtain the discrete equation of motion, and from the 
related state space representation, control gains were 
obtained by the pole placement method for the appro-
priate modal control. Solving the algebraic eigenvalue 
problem was a crucial part of the analysis. The results 
obtained show that control of the first three modes of 
vibration was successfully accomplished with a single 
input, by using a piezo-actuator placed in a position 
which remained constant. This is more than evident for 

the first mode where the amplitude of the vibration 
completely decreases to cero after two seconds; howe-
ver, for the second and third modes, some very low am-
plitude vibration remains in the flexible beam, while 
the control forces are larger for the second and third 
modes than for the first mode. This is a consequence of 
the actuator placed at the longitudinal position of the 
beam with the highest strain (fixed end) for mode one, 
while the corresponding highest strain position for the 
beam in mode two is located at the middle of the span 
of the beam, and for the beam in mode three there are 
two highest strain positions located at one-third and 
two-third of the beam length. Of course, if vibration in 
modes two and three is to be completely controlled, 
placing additional actuators along the beam is needed 
but at higher expenses considering multiple input-mul-
tiple output systems.
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