Inceniería Investicación y Tecnología volumen XX (número 4), octubre-diciembre 2019 1-14 ISSN 2594-0732 FI-UNAM artículo arbitrado

Información del artículo: Recibido: 13 de agosto de 2018, reevaluado: 2 de julio de 2019,

aceptado: 6 de agosto de 2019

Attribution-NonCommercial-NoDerivatives~4.0~International~(CC~BY-NC-ND~4.0)~license~http://dx.doi.org/10.22201/fi.25940732e.2019.20n4.042

Modelo de demanda de la actividad aérea en México Demand model of the air activity in Mexico

Herrera-García Alfonso Instituto Mexicano del Transporte Coordinación de Integración del Transporte, México Correo: aherrera@imt.mx https://orcid.org/0000-0003-3710-253X González-Moreno Jonatan Omar Instituto Mexicano del Transporte Coordinación de Economía de los Transportes y Desarrollo Regional, México Correo: jgonzalez@imt.mx

https://orcid.org/0000-0002-5922-5146

Resumen

Aunque hay diversos factores que propician los viajes en el modo aéreo, uno de ellos es el poder adquisitivo de los usuarios. El propósito de esta investigación fue establecer un modelo para estimar la demanda del servicio aéreo de los distintos aeropuertos mexicanos, con base en el grado de marginación de los habitantes a los que se ofrece el servicio. Para delimitar la zona de influencia de cada aeropuerto se utilizó el método de accesibilidad espacial y para establecer los modelos de demanda se realizaron análisis estadísticos de regresión lineal simple y múltiple, pruebas de hipótesis y análisis de varianza. Con los modelos obtenidos se encontró que la demanda del servicio aéreo se puede explicar en cierta medida por el grado de marginación que tiene la población en la zona de influencia de cada aeropuerto, tanto en vuelos domésticos (R² ajustado = 64.74 %) como internacionales (R² ajustado = 75.64 %). Esta es la primera vez que se estiman modelos de demanda para todos los aeropuertos mexicanos, considerando la accesibilidad espacial y el grado de marginación de la población. En los análisis de regresión, la variable que en todos los casos tuvo un efecto en la demanda de pasajeros fue el grado de marginación muy bajo. También, se observó que con base en los residuales estandarizados, es posible detectar objetivamente a aquellos aeropuertos que tienen mayor potencial para generar demanda de pasajeros en su zona de influencia, como sucedió en el caso del aeropuerto de Pachuca, y a los aeropuertos que funcionan como centros concentradores y distribuidores.

Descriptores: Aeropuerto, demanda, marginación, modelo, vuelo doméstico, vuelo internacional, zona de influencia.

Abstract

Although there are various factors favouring travel by the air mode, one of them is purchasing power of users. The purpose of this research was to establish a model to estimate the air service demand for the different Mexican airports, based on marginalization degree of the inhabitants that they serve. Spatial accessibility method was used to delimit the zone of influence of each airport and in order to establish the demand models, statistical analysis of simple and multiple linear regressions, hypothesis tests and analysis of variance were conducted. With the obtained models, it was found that the air service demand can be explained by the marginalization degree of the population in the zone of influence of each airport, both domestic (adjusted $R^2 = 64.74$ %) and international flights (adjusted $R^2 = 75.64$ %). This is the first time that demand models are estimated for all the Mexican airports considering spatial accessibility and marginalization degree of population. In all cases of regression analysis, the variable that had effect on the passengers demand was the lowest marginalization degree. Also, it was observed that based on the standardized residuals, it is possible to objectively detect those airports that have greater potential to generate passenger demand in their zone of influence, as happened in the case of Pachuca airport, and airports which work as hubs.

Keywords: Airport, demand, domestic flight, international flight, marginalization, model, zone of influence.

Introducción

En años recientes, los estudios de demanda del servicio aéreo han incrementado el interés de las aerolíneas, aeropuertos, gobiernos e investigadores, dado que estos viajes son un papel clave del transporte, conforme avanza el proceso de globalización. El servicio aéreo es una herramienta indispensable para la integración nacional, el turismo, la creación de negocios y el comercio nacional e internacional de mercancías, por lo que, es un factor determinante de la competitividad y el desarrollo. En el caso de las aerolíneas, el análisis y pronóstico de la demanda del servicio es esencial para el manejo de sus flotas. Para los aeropuertos, la evaluación actual y futura de la demanda es un elemento fundamental para sus planes de inversión y ampliación de instalaciones. Mientras que, para los gobiernos, los pronósticos de esta demanda son imprescindibles para el diseño de políticas públicas que impulsen el desarrollo económico. Por su parte, los investigadores han desarrollado estudios de la demanda del servicio aéreo, sin embargo, la mayoría de estos trabajos se han centrado en países desarrollados, particularmente en Estados Unidos, el Reino Unido, España y Australia, y muy pocos casos en otros países (Valdes, 2015). En particular, este documento se centra en el caso de México y utiliza información del grado de marginación de las localidades del país y de las áreas de influencia de los aeropuertos mexicanos.

Algunos estudios previos han establecido que existe alguna relación entre las condiciones socioeconómicas de las ciudades y el volumen de pasajeros transportados en los aeropuertos de dichos sitios (Lakew, 2015); y en estudios aplicados en el ámbito mundial se ha encontrado que hay una correlación entre los flujos de pasajeros transportados y la actividad económica de las distintas áreas geográficas (Profillidis *et al.*, 2015). Por último, se ha sugerido determinar la correlación entre las áreas de influencia de los aeropuertos, los grados de marginación que comprenden y su actividad aérea, con objeto de generar un modelo para predecir los flujos de pasajeros (Herrera *et al.*, 2014).

El índice de marginación es una medida-resumen que permite diferenciar al país según el impacto global de las carencias que padece la población, por lo que contribuye a identificar las disparidades territoriales. Para cuantificar la intensidad global de la marginación (índice) se utilizan nueve indicadores que miden la intensidad de exclusión. Este índice permite agrupar las áreas de interés en cinco conjuntos claramente diferenciados, de acuerdo con la síntesis de las nueve formas de exclusión social. Mediante un método estadístico se

divide el recorrido del índice de marginación en cinco intervalos, mediante cuatro puntos de corte. De esta manera, se establecen los grados de marginación: muy bajo, bajo, medio, alto y muy alto, según el intervalo en que se ubique el valor de su índice (CONAPO, 2011).

Dado que la marginación es una medida integrada de las carencias de la población, su magnitud y distribución pueden servir para estimar el potencial de la actividad aérea. Una población con muy alta marginación difícilmente podrá acceder a este servicio, por el contrario, una marginación muy baja se puede relacionar con la población que puede acceder a este servicio regularmente.

El objetivo general de este trabajo es establecer un modelo de demanda de la actividad aérea en México. Para ello, se consideró que esta actividad depende de ciertas características de los aeropuertos, en particular de su ubicación, la cual define su área de influencia y del grado de marginación de la población en dicha zona.

DESARROLLO

Inicialmente, se determinaron las áreas de influencia de los aeropuertos, diferenciando a sus dos servicios, el nacional y el internacional. En los dos casos, se utilizó el método de accesibilidad espacial (isócronas de recorrido). Posteriormente, se determinó para cada zona de influencia la población asociada con sus diferentes grados de marginación. Por último, mediante un análisis estadístico, se determinaron los modelos matemáticos que ofrecieron las mejores correlaciones entre la población por grado de marginación y los pasajeros atendidos en cada área de influencia.

MÉTODO DE ACCESIBILIDAD ESPACIAL O DE ISÓCRONAS DE RECORRIDO

Cada usuario antes de seleccionar su vuelo, debe decidir cuál aeropuerto es el más conveniente. Se considera que los usuarios eligen el aeropuerto en función del tiempo que les toma llegar hasta él, y eligen aquel que les ofrece el menor tiempo de acceso.

Mediante el método de accesibilidad espacial se delimitó el área de influencia de los aeropuertos. Este método considera que el espacio terrestre no es isotrópico, dado que existen diferencias de impedancia en el terreno, derivadas de la topografía y de las distintas vías de comunicación entre los aeropuertos y sus destinos.

El método de accesibilidad espacial (González, 2007) incorpora modelos digitales de elevación, así como las características geométricas y velocidades de

desplazamiento en la infraestructura carretera. Como resultado de estas consideraciones se obtienen isócronas de recorrido, es decir, líneas que muestran el mismo tiempo de desplazamiento de uno o varios objetivos de interés.

La accesibilidad se calcula a partir de una superficie de fricción, que consta de una cuadrícula bidimensional (formato *raster*), donde cada celda de la cuadrícula representa la impedancia existente en el terreno para el óptimo desplazamiento en esa celda. El formato *raster* es una forma de tratamiento y representación de los elementos espaciales mediante la disposición de "n" nú-

mero de celdas o píxeles en forma de matriz numérica. Los elementos de impedancia considerados para este estudio fueron los índices de velocidad de desplazamiento, según el tipo de carretera; la pendiente del terreno; y la modalidad de transporte utilizado (vehículo automotor y/o recorrido pedestre). Dichos elementos condicionantes quedaron plasmados como el valor de impedancia en cada celda o píxel. De esta forma, cada celda de la superficie de fricción representa el tiempo de viaje o desplazamiento en ella.

En las Figuras 1 y 2, se muestra una capa raster de isócronas de recorrido (junto con un modelo digital de

Figura 1. Isócronas de recorrido y áreas de influencia de los aeropuertos mexicanos en servicio nacional

Fuente: Elaboración propia con base en la metodología de accesibilidad espacial

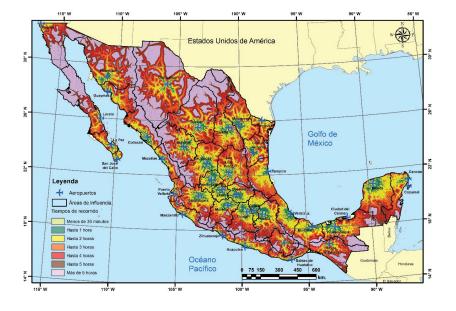


Figura 2. Isócronas de recorrido y áreas de influencia de los aeropuertos mexicanos en servicio internacional

Fuente: Elaboración propia con base en la metodología de accesibilidad espacial terreno), tomando como objetivo a cada uno de los aeropuertos mexicanos. La primera figura corresponde al caso de los servicios nacionales y la segunda al de internacionales.

En estas imágenes; con color verde claro se muestra aquel perímetro que se encuentra a menos de treinta minutos de desplazamiento; con color verde oscuro el área indica hasta una hora de desplazamiento; el área con color amarillo representa hasta dos horas de desplazamiento; enseguida los colores naranja, rojo-coral y café, representan desplazamientos de hasta tres, cuatro y cinco horas, respectivamente; pasando dicha área, con color lila se representa todo aquel territorio que necesita más de cinco horas para su acceso.

De esta forma, las áreas de influencia resultantes mediante el método de accesibilidad espacial, para los dos tipos de servicios, nacional e internacional, están delimitadas mediante líneas negras en las Figuras 1 y 2. Se debe señalar que este método supone que los aeropuertos de interés cumplen con las demandas de los usuarios, es decir, que ofrecen las instalaciones, equipos y servicios demandados (por ejemplo, destinos, tarifas, frecuencias de vuelo, terminales de pasajeros, y servicios de migración); en caso contrario, los usuarios se desplazarían hacia el aeropuerto más cercano que sí los ofrezca.

En todos estos mapas se utilizó una proyección cónica conforme de Lambert (CCL) y datum WGS84. Las capas de información utilizadas en la elaboración de estos mapas fueron: para la ubicación de los aeropuertos (SENEAM, 2018); y para la estimación de las áreas de influencia (INEGI, 2018a), (INEGI, 2018b) e (IMT/SCT, 2010).

Posteriormente, se incorporaron a las áreas de influencia estimadas, los distintos grados de marginación por localidad para 2010, Figuras 3 y 4 (CONAPO, 2011). De esta forma, se estimó para cada área de influencia, la distribución correspondiente de los cinco grados de marginación.

Los resultados de la aplicación de esta metodología se presentan en las Tablas 1 y 2. Observe que en la última columna de estas tablas se incluyó la cantidad de pasajeros que atendió cada aeropuerto anualmente durante 2010 (DGAC, 2010).

Además, el método de isócronas de recorrido estimó que 66.5 % de la población total tiene acceso al servicio aéreo doméstico en un rango de tiempo de una hora. Este valor sube a 89.6, 95, 97 y 98 % para los rangos de hasta dos, tres, cuatro y cinco horas, respectivamente. Para el servicio internacional los porcentajes respectivos desde una hasta cinco horas son: 55.6, 81.7, 90.6, 96 y 98 %.

Análisis estadístico de los pasajeros atendidos y de los diferentes grados de marginación

En este inciso se realizaron análisis estadísticos de regresión lineal simple y múltiple de los pasajeros atendidos y de la población de los cinco distintos grados de marginación, establecidos en el inciso anterior. Además, se determinaron las estadísticas de las regresiones, se detectaron los datos atípicos, se realizaron pruebas de hipótesis junto con sus análisis de varianza y se establecieron los coeficientes estandarizados de la mejor correlación entre las variables explicativas.

Pasajeros en vuelos nacionales considerando todos los grados de marginación

Inicialmente se consideró que la población con los distintos grados de marginación dentro del área de influencia de cada aeropuerto, eran variables determinantes de la cantidad de pasajeros aéreos atendidos (PASAJEROS). Bajo este supuesto, la relación más simple y directa se obtiene mediante la siguiente ecuación:

PASAJEROS = $\beta_0 + \beta_1$ MUY_ALTO + β_2 ALTO + β_3 ME-DIO + β_4 BAJO + β_5 MUY_BAJO + ϵ

Esta ecuación se determinó mediante el método de regresión lineal múltiple.

Coeficiente de correlación múltiple = 0.8229Coeficiente de determinación $R^2 = 0.6772$ R^2 ajustado = 0.6473

Se observa que existe una correlación múltiple entre las variables explicativas (la población con los distintos grados de marginación) y la variable explicada (pasajeros) correspondiente a 0.8229, y que el modelo descrito explica 64.73 % de la variabilidad entre los datos, de acuerdo con el coeficiente de determinación R² ajustado, dado que se está aplicando una técnica de regresión lineal múltiple y tomando en cuenta el número de variables incluidas en el modelo.

Sin embargo, es necesario hacer pruebas de hipótesis sobre los coeficientes encontrados, para determinar si explican la variable con un nivel de significancia aceptable. En este caso β_0 es la intersección de la recta de regresión.

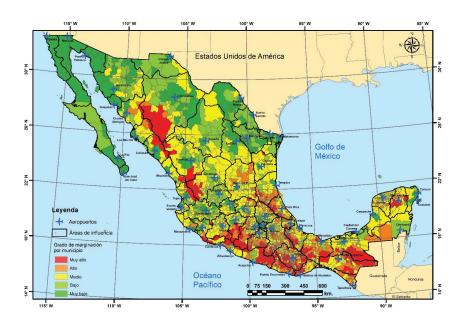


Figura 3. Grados de marginación dentro de las áreas de influencia de los aeropuertos mexicanos en servicio nacional

Fuente: Elaboración propia con base en la metodología establecida en este inciso

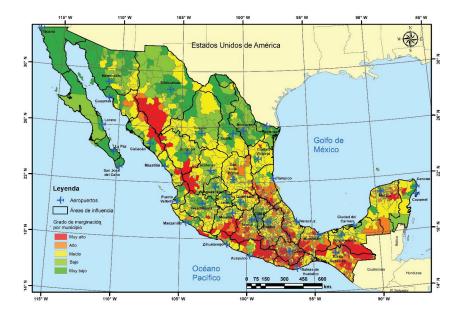


Figura 4. Grados de marginación dentro de las áreas de influencia de los aeropuertos mexicanos en servicio internacional

Fuente: Elaboración propia con base en la metodología establecida en este inciso

Tabla 1. Distribución de la población por grado de marginación dentro de cada área de influencia de los aeropuertos en servicio nacional durante 2010 y pasajeros atendidos anualmente

	Aeropuerto		Población p	or grado de m	arginación		Población	Pasajeros
		Muy alto	Alto	Medio	Bajo	Muy bajo	total	atendidos
1	Acapulco	257.761	863.846	74.181	860.922	402	2.057.112	555.477
2	Aguascalientes	2.526	171.355	211.892	684.623	779.686	1.850.082	220.458
3	Bahías de Huatulco	39.864	204.426	159.680	128.982	4.249	537.201	307.011
4	Campeche	2.170	142.910	104.793	12.202	222.127	484.202	97.129
	•							
5	Cancún	2.820	55.999	37.311	809.460	710	906.300	3.414.580
6	Chetumal	2.060	126.350	54.901	68	151.517	334.896	85.657
7	Chichen Itzá	12.307	332.306	52.516	1.789	192	399.110	14
8 9	Chihuahua Ciudad del Carmen	88.721 231	107.642 33.434	78.147 1.097	226.951 192.304	1.404.841 19	1.906.302	782.018 229.815
10	Ciudad del Carmen Ciudad Juárez	100	3.174	26.417	42.228	1.462.421	227.085 1.534.340	622.130
11	Ciudad Juaiez Ciudad Obregón	7.353	131.982	51.820	175.295	452.383	818.833	204.188
12	Ciudad Victoria	2.127	59.524	74.860	79.894	308.580	524.985	46.982
13	Colima	8.253	77.770	181.698	326.217	267.454	861.392	37.930
14	Cozumel	15	1.863	19	77.245	88	79.230	3.509
15	Cuernavaca	65.765	630.343	340.943	859.740	588.250	2.485.041	7.982
16	Culiacán	17.008	168.527	132.699	169.725	774.065	1.262.024	1.077.305
17	Del Bajío	13.838	570.467	453.460	1.835.810	659.940	3.533.515	503.228
18	Durango	32.000	76.966	133.633	245.894	561.562	1.050.055	140.100
19	Guadalajara	4.922	219.248	462.767	2.368.749	3.114.130	6.169.816	4.850.640
20 21	Guaymas	696 1.449	7.991 54.763	11.472 19.837	4.238 75.142	158.063 1.072.504	182.460 1.223.695	204 1.119.676
22	Hermosillo Jalapa	29.191	621.182	277.051	194.347	450.952	1.572.723	9.132
23	La Paz	1.408	25.143	14.205	90.369	241.192	372.317	472.598
24	Lázaro Cárdenas	7.230	21.093	88.729	13.669	79.200	209.921	15.145
25	Los Mochis	11.699	155.763	213.208	206.377	345.189	932.236	221.978
26	Manzanillo	3.362	60.448	78.821	71.283	131.755	345.669	66.790
27	Matamoros	2.482	22.686	29.444	112.226	450.570	617.408	45.862
28	Mazatlán	9.257	78.983	68.565	139.525	381.872	678.202	392.844
29	Mérida	2.640	557.381	98.248	186.635	778.793	1.623.697	1.038.577
30	Mexicali	276	21.951	33.133	171.319	903.765	1.130.444	442.267
31	México	684	169.072	841.933	1.663.172	8.081.078	10.755.939	15.311.056
32 33	Minatitlán	74.698 1.264	880.953 29.512	516.915 40.309	503.393 160.075	42.973 4.270.174	2.018.932	114.173 4.623.651
34	Monterrey Morelia	21.976	675.864	430.693	400.057	683.357	4.501.334 2.211.947	231.595
35	Nuevo Laredo	61	3.509	1.230	29.914	414.436	449.150	89.177
36	Oaxaca	77.154	835.103	234.181	394.290	53.026	1.593.754	395.612
37	Pachuca	50.994	790.841	714.001	1.288.003	5.282.640	8.126.479	463
38	Piedras Negras	237	6.181	7.334	82.844	479.262	575.858	779
39	Poza Rica	112.208	1.166.226	407.103	371.711	27.188	2.084.436	90.571
40	Puebla	199.002	2.248.965	1.145.822	1.054.856	1.663.076	6.311.721	286.370
41	Puerto Escondido	91.244	439.963	52.082	627	498	584.414	47.746
42	Puerto Peñasco	162	12.879	9.897	70.695	65.874	159.507	3.649
43	Puerto Vallarta	393	11.731	52.330	116.038	267.187	447.679	717.630
44 45	Querétaro Reynosa	25.224 476	977.129 7.959	489.350 23.319	658.327 128.720	1.292.388 591.970	3.442.418 752.444	59.947 188.694
46	Saltillo	2.067	7.939	44.038	27.315	1.122.310	1.266.442	58.499
47	San José del Cabo	976	50.237	23.094	82.172	84.480	240.959	721.150
48	San Luis Potosí	28.101	653.836	221.703	216.837	1.058.357	2.178.834	131.870
49	Tampico	60.805	780.255	312.313	537.753	583.557	2.274.683	396.639
50	Tapachula	36.276	560.800	145.494	219.373	1.462	963.405	181.682
51	Tepic	18.900	65.573	164.575	149.480	394.302	792.830	26.278
52	Tijuana	5.928	100.656	128.382	173.665	1.794.878	2.203.509	3.537.093
53	Toluca	74.171	2.096.859	671.670	1.284.767	3.874.370	8.001.837	2.063.135
54	Torreón	1.899	50.673	144.148	371.717	1.028.021	1.596.458	281.261
55	Tuxtla Gutiérrez	267.839	1.461.823	511.237	542.613	6.854	2.790.366	631.412
56	Uruapan	25.287	571.938	460.564	629.873	9.525	1.697.187	92.405
57	Veracruz	219.012 239.137	1.041.906	337.313	657.284 554.467	889.998 EEE 604	3.145.513	811.897
58 59	Villahermosa Zacatecas	239.137 37.361	1.404.252 197.847	508.942 263.161	554.467 369.192	555.694 385.718	3.262.492 1.253.279	709.496 181.097
60	Zihuatanejo	14.867	102.371	128.074	6.850	9.258	261.420	283.745

Fuente: Elaboración propia con base en la metodología presentada en este inciso

Tabla 2. Distribución de la población por grado de marginación dentro de cada área de influencia de los aeropuertos en servicio internacional durante 2010 y pasajeros atendidos anualmente

Aeropuerto		Población p	or grado de mai	ginación			Población	Pasajeros
		Muy alto	Alto	Medio	Bajo	Muy bajo	total	atendidos
1	Acapulco	281.494	1.070.334	105.121	861.549	444	2.318.942	139.275
2	Aguascalientes	2.519	168.434	211.662	684.412	779.686	1.846.713	60.146
3	Bahías de Huatulco	80.286	421.286	196.022	128.982	4.574	831.150	60.286
4	Cancún	12.251	251.500	144.005	809.524	152.320	1.369.600	8.461.921
5	Chihuahua	90.073	112.355	104.223	269.129	2.789.854	3.365.634	53.559
6	Ciudad del Carmen	231	33.273	1.097	192.321	19	226.941	20.596
7	Ciudad Victoria	2.105	60.770	76.844	81.510	308.613	529.842	31
8	Cozumel	15	1.863	19	77.245	88	79.230	365.794
9	Culiacán	28.308	323.345	345.158	375.295	1.119.254	2.191.360	706
10	Del Bajío	14.445	587.630	469.560	1.835.810	659.940	3.567.385	318.735
11	Durango	31.657	76.529	133.480	245.894	561.532	1.049.092	12.804
12	Guadalajara	17.547	439.267	703.037	2.894.977	3.119.818	7.174.646	1.996.639
13	Guaymas	7.398	138.842	63.472	179.743	610.446	999.901	6.920
14	Hermosillo	1.665	68.273	30.693	146.484	1.215.786	1.462.901	72.110
15	La Paz	352	7.647	4.695	8.423	223.204	244.321	20.484
16	Loreto	1.056	18.276	9.942	82.905	33.594	145.773	26.138
17	Manzanillo	14.835	117.709	286.557	134.657	477.379	1.031.137	74.459
18	Mazatlán	15.415	109.062	157.340	183.625	381.895	847.337	338.688
19	Mérida	7.832	919.682	173.866	200.594	1.001.012	2.302.986	86.642
20	México	42.819	854.196	1.602.525	3.077.571	12.895.474	18.472.585	8.363.164
21	Minatitlán	75.811	874.312	514.652	503.393	42.973	2.011.141	46
22	Monterrey	1.339	35.281	45.441	198.001	4.554.269	4.834.331	644.119
23	Morelia	39.032	1.073.603	704.781	821.407	688.255	3.327.078	173.736
24	Oaxaca	102.869	858.515	230.670	394.290	53.199	1.639.543	20.519
25	Puebla	258.327	2.929.885	1.338.163	1.222.023	1.663.589	7.411.987	31.102
26	Puerto Vallarta	9.966	41.439	120.395	180.401	661.435	1.013.636	1.869.873
27	Querétaro	27.619	1.075.998	525.201	722.137	1.292.561	3.643.516	39.316
28	Reynosa	2.944	28.582	49.603	239.374	1.067.070	1.387.573	38
29	Saltillo	2.312	76.274	48.340	101.754	1.707.350	1.936.030	16.296
30	San José del Cabo	976	50.237	23.094	82.172	84.490	240.969	1.904.503
31	San Luis Potosí	28.322	661.481	223.518	216.837	1.058.357	2.188.515	66.932
32	Tampico	102.508	1.454.040	438.043	846.508	609.382	3.450.481	27.500
33	Tijuana	6.204	121.827	161.083	344.025	2.683.027	3.316.166	21.330
34	Toluca	120.486	2.449.336	873.406	1.863.332	4.930.279	10.236.839	88.997
35	Torreón	1.969	51.369	144.558	372.066	1.028.051	1.598.013	44.607
36	Tuxtla Gutiérrez	316.997	2.071.869	665.591	762.381	8.316	3.825.154	5.219
37	Veracruz	284.115	1.724.072	758.066	838.058	1.342.170	4.946.481	34.922
38	Villahermosa	228.179	1.408.870	532.243	554.091	555.701	3.279.084	30.273
39	Zacatecas	40.030	200.675	265.270	369.558	385.718	1.261.251	71.719
40	Zihuatanejo	15.626	103.203	115.318	6.850	9.258	250.255	186.673

Fuente: Elaboración propia con base en la metodología presentada en este inciso

Para validar el modelo de regresión se analizó si la variabilidad de PASAJEROS, atribuida al efecto del conjunto de las variables predictoras es lo suficientemente grande, con relación a la variabilidad no explicada o residual. Para este propósito, se utilizó el estadístico F de Fisher. La probabilidad (Pr) asociada al resultado de aplicar esta prueba indica el grado de certidumbre con el que la parte explicativa del modelo y el residual coinciden. Si dicha probabilidad es pequeña (sí es menor que α = 0.05), se concluiría que la parte explicativa supera en cantidad suficiente a la no explicada, por lo que las variables explicativas se considerarían significativas en su conjunto.

Hipótesis nula, H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$

Hipótesis alternativa, H_1 : Existe i = 1,...,5 tal que $\beta_i \neq 0$

Para estas hipótesis se utilizó la prueba t, el resultado de aplicar esta prueba puede ser encontrado en el análisis de regresión como el valor p de las betas, si este es menor a 0.05, el coeficiente β_i es significativo, como se observa a continuación Pr > |t| (Tabla 3).

valor p de β_0 = 0.719 > 0.05, luego, el valor de la intersección encontrada no es significativamente aceptable, así, no se rechaza la hipótesis nula; β_0 = 0

valor p de β_1 = 0.073 > 0.05, luego, no se rechaza la hipótesis nula; β_1 = 0

valor p de β_2 = 0.009 < 0.05, luego, el valor encontrado para β_2 es significativamente aceptable, así, se acepta la hipótesis alternativa; $\beta_2 \neq 0$, $\beta_2 = -2.092$

valor p de β_3 = 0.499 > 0.05, luego, el valor encontrado para β_3 no es significativamente aceptable, así, no se rechaza la hipótesis nula; β_3 = 0

valor p de β_4 = 0.213 > 0.05, luego, no se rechaza la hipótesis nula; β_4 = 0

valor p de β_5 < 0.0001 < 0.05, luego, el valor encontrado para β_5 es significativamente aceptable, así, se acepta la hipótesis alternativa; $\beta_5 \neq 0$, $\beta_5 = 1.092$

Luego, se corre nuevamente el modelo de regresión, pero únicamente con las variables MUY_BAJO y ALTO, con la constante de intersección igual a cero (Tabla 4). Así, la ecuación (1) se modifica como:

$$PASAJEROS = 1.2342 MUY_BAJO - 0.7253 ALTO$$
 (2)

Es conveniente notar los signos que acompañan a las variables MUY_BAJO y ALTO. Ya que el primero tiene signo positivo, lo que significa que contribuye de forma directa a la variable PASAJEROS. Por el contrario, la variable ALTO presenta un signo negativo, así que su contribución es opuesta a la anterior, es decir, a mayor magnitud de población con grado de marginación ALTO, se espera una menor demanda de PASAJEROS y viceversa. A continuación, se depurarán los datos para mejorar el modelo.

Tabla 3. Parámetros de la regresión

	U			
Fuente	Valor	Error estándar	t	Pr > t
Intersección	- 83674.818	231585.135	- 0.361	0.719
MUY_ALTO	7.276	3.986	1.825	0.073
ALTO	- 2.092	0.776	- 2.697	0.009
MEDIO	1.162	1.709	0.680	0.499
BAJO	0.676	0.537	1.260	0.213
MUY_BAJO	1.092	0.164	6.651	< 0.0001

Fuente: Elaboración propia

Tabla 4. Parámetros de la regresión

Fuente	Valor	Error estándar	t	Pr > t
Intersección	56093.31	232110.98	0.24166	0.8099
ALTO	- 0.7253	0.3444	- 2.10568	0.0396
MUY_BAJO	1.2342	0.1237	9.97359	< 0.0001

Pasajeros en vuelos nacionales, excluyendo datos atípicos y considerando todos los grados de marginación

Para determinar los datos atípicos se realizó un análisis de residuales. Un residual r_i es la diferencia entre el valor observado Y_i y el valor estimado por la línea de regresión $\hat{Y}_{i\prime}$ es decir:

$$r_i = Y_i - \hat{Y}_i$$

El residual puede ser considerado como el error aleatorio e_i observado.

En la Figura 5 se presentan los residuales estandarizados para los distintos aeropuertos (observaciones) con objeto de detectar datos discrepantes. Al utilizar los residuales estandarizados, un dato más allá de 2 o - 2 es considerado atípico. Por lo tanto, las observaciones 5 (aeropuerto de Cancún), 31 (aeropuerto de México) y 37 (aeropuerto de Pachuca) son atípicas.

A continuación, se realizó el análisis de regresión múltiple, pero sin los datos discrepantes, con lo que se obtuvo la siguiente ecuación:

$$PASAJEROS = -0.2964 ALTO + 0.9411 MUY_BAJO$$
 (3)

Con un R² ajustado de 0.647411.

Por otra parte, para establecer estimaciones adecuadas de los coeficientes de las ecuaciones se requiere que las variables explicativas no presenten correlaciones altas entre sí. Se dice que los coeficientes de la ecuación múltiple son coeficientes de *correlación parcial* por lo que, en caso de existir gran colinealidad entre los predictores (variables independientes), las estimaciones de regresión lineal hechas para cada regresora diferirán considerablemente respecto a los resultados obtenidos, lo cual nos interesa ampliamente en nuestro caso. En la Tabla 5 se presentan los coeficientes de correlaciones, observe que se han subrayado los más altos, que corresponden a ALTO y MEDIO (0.779) y después a MUY_ALTO y ALTO (0.748).

Ya que las variables utilizadas dadas su significancia estadística son MUY_BAJO y ALTO, los altos grados de correlación mencionados no son de importancia.

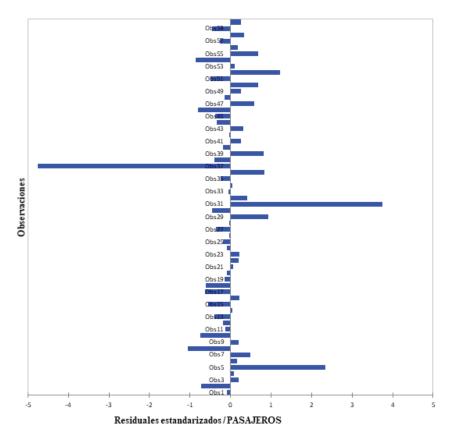


Figura 5. Residuales estandarizados para determinar datos atípicos en el servicio nacional

Tabla 5. Coeficientes de correlaciones

	MUY_ALTO	ALTO	MEDIO	BAJO	MUY_BAJO	PASAJEROS
MUY_ALTO	1	0.748	0.469	0.258	- 0.057	- 0.086
ALTO	0.748	1	0.779	0.449	0.145	-0.054
MEDIO	0.469	0.779	1	0.721	0.516	0.326
BAJO	0.258	0.449	0.721	1	0.571	0.486
MUY_BAJO	-0.057	0.145	0.516	0.571	1	0.780
PASAJEROS	-0.086	-0.054	0.326	0.486	0.780	1

Fuente: Elaboración propia

Pasajeros en vuelos nacionales con base en el grado de marginación MUY BAJO

En este inciso, se realiza una regresión lineal simple, considerando al número de pasajeros como la variable dependiente y a la población con el grado de marginación MUY_BAJO como la variable independiente, sin considerar los datos atípicos.

Se busca una relación que explique de la mejor forma posible a los datos mediante una ecuación de la forma:

PASAJEROS = $\beta_0 + \beta_1 MUY_BAJO$

De acuerdo con el análisis de regresión se estimaron los coeficientes β_0 y β_1 , estableciéndose la siguiente relación:

$$PASAJEROS = -55901.71 + 0.9022 MUY_BAJO$$
 (4)

Coeficiente de correlación múltiple = 0.7983Coeficiente de determinación $R^2 = 0.6372$ R^2 ajustado = 0.6307

Así, la ecuación (4) es útil para modelar 63.72 % de los datos, en donde PASAJEROS es la variable dependiente de MUY_BAJO (variable independiente). Por otra parte, es necesario realizar una prueba de hipótesis para determinar si el valor verdadero de las betas es distinto de cero y así definir si el coeficiente estimado explica a la variable con un nivel de significancia aceptable. En este caso β_0 es la intersección de la recta de regresión y β_1 es la razón estimada entre la variable dependiente (PASAJE-ROS) y la independiente (MUY_BAJO) (Tabla 6).

De acuerdo con el análisis de varianza:

valor p de β_0 = 0.577 > 0.05, no se rechaza la hipótesis nula; β_0 = 0

valor p de β_1 < 0.0001 < 0.05, luego, se acepta la hipótesis alternativa; $\beta_1 \neq 0$, β_1 = 0.902

Por lo que la ecuación lineal presentada arriba (4), es válida

Pasajeros en vuelos nacionales para los otros cuatro grados de marginación

Similarmente, como en el caso anterior aplicando un análisis de regresión lineal simple, se estimaron las ecuaciones para los grados de marginación BAJO, MEDIO, ALTO y MUY_ALTO en forma individual, sin embargo, se obtuvieron valores de R^2 muy bajos. Por lo que las regresiones lineales con grado de marginación BAJO (R^2 = 0.179), MEDIO (R^2 = 0.0112), ALTO (R^2 = 0.001) y MUY_ALTO (R^2 = 0.00022), no explican individualmente de manera significativa a la variable PASA-JEROS mediante un análisis de regresión simple.

Por lo anterior, se trataron de ajustar en cada caso los datos con una ecuación polinómica, de grado 2, 3, 4 y 5. Sin embargo, en todos los casos se obtuvieron valores de R² con un valor casi igual a cero, y no hubo variables con valor p significativo. Por lo que, la mejor opción para describir la variable PASAJEROS con una sola variable solo se presentó en el caso del grado de marginación MUY_BAJO (inciso anterior).

Tabla 6. Parámetros de la regresión

Fuente	Valor	Error estándar	t	Pr > t	
Intersección	55901.714	99729.378	- 0.561	0.577	
MUY_BAJO	0.902	0.092	9.831	< 0.0001	

Pasajeros en vuelos nacionales, con base en los grados de marginación

MUY_BAJO, BAJO, MUY_ALTO Y ALTO

En este caso:

PASAJEROS =
$$-0.2964$$
 ALTO + 0.9411 MUY_BAJO + ε (5)

Con un R² ajustado igual a 64.74 %.

De acuerdo con la ecuación (5), por cada unidad que aumenta la variable ALTO (a mayor población con grado de marginación), disminuye – 0.2964 la variable PASAJEROS, es decir, mientras mayor sea la población con grado de marginación alto, disminuye la demanda de pasajeros en el aeropuerto. También, se observa que por cada unidad que aumenta MUY_BAJO, aumenta 0.9411 PASAJEROS.

A continuación, se estiman los coeficientes estandarizados del análisis anterior de regresión múltiple (Tabla 7).

La ventaja de estos coeficientes, sobre los no estandarizados, es la posibilidad de poder evaluar y comparar el poder explicativo de cada predictor en la ecuación, al ser directamente comparables. Como el coeficiente β_i es solo una tasa de cambio, esta se mide en las unidades de la relación: Unidades de la variable dependiente / Unidades de la variable explicativa. Para estimar una variable estandarizada, al valor individual de dicha variable se le debe restar el valor de su media, y dividir esa diferencia entre su desviación estándar. En la regresión de Y y X, se definen como:

$$Y_i^* = \frac{Y_i - \overline{Y}}{S_Y}$$

$$X_i^* = \frac{X_i - \overline{X}}{S_x}$$

Donde:

 Y_i^*, X_i^* = Variables estandarizadas

 \overline{Y} = Media muestral de Y

 \bar{X} = Media muestral de X

 S_{Y} = Desviación estándar muestral de Y

 S_X = Desviación estándar muestral de X

Los coeficientes estandarizados establecen una escala única (en desviaciones típicas respecto al cero) sobre la que se miden las diferentes variables y, por lo tanto, constituyen la base para conocer comparativamente en cuántos puntos modifica la variable Y por cuenta de cada variable regresora. Transformando la ecuación a su forma estandarizada, los coeficientes son ahora directamente comparables.

$$PASAJEROS^* = 0.320 MUY_ALTO^* - 0.5 ALTO^* + 0.211$$

 $BAJO^* + 0.828 MUY_BAJO^*$ (6)

Así, sí se mantienen constantes a ALTO, BAJO y MUY_BAJO, un aumento igual a una desviación estándar en MUY_ALTO ocasiona, en promedio, un aumento de 0.320 desviación estándar en PASAJEROS. Aplicando un análisis análogo para el resto de las variables, se observa que la variable con el mayor impacto en PASAJEROS es la variable MUY_BAJO. Sí se mantienen constantes MUY_ALTO, ALTO y BAJO, un aumento de una desviación estándar en la variable MUY_BAJO ocasiona, en promedio, un aumento de 0.828 desviación estándar en la variable PASAJEROS.

Pasajeros en vuelos internacionales considerando todos los grados de marginación

Se realizó un análisis similar al aplicado para los vuelos nacionales (sección anterior). En particular, con base en el análisis de los residuos estandarizados se encontró solo un valor atípico (+5.019), que correspondió al aeropuerto de Cancún. Posteriormente, al depurar el modelo mediante un análisis de regresión múltiple que consideró a todos los grados de marginación, pero que excluyó al valor discrepante, se determinó que tres de las cinco variables son significativas. Las variables a considerar entonces son ALTO, MEDIO y MUY_BAJO,

Tabla 7. Parámetros de la regresión (coeficientes estandarizados)

Fuente	Valor	Error estándar	t	Pr > t
MUY_ALTO	0.320	0.114	2.799	0.007
ALTO	-0.500	0.123	-4.066	0.000
BAJO	0.211	0.091	2.309	0.025
MUY_BAJO	0.828	0.084	9.844	< 0.0001

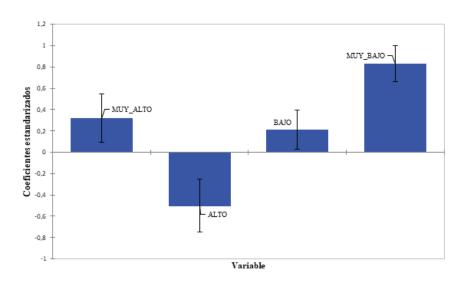


Figura 6. Coeficientes estandarizados (PASAJEROS) con un intervalo de confianza de 95 %
Fuente: Elaboración propia

por lo que se realizó nuevamente el modelo de regresión, pero únicamente con estas tres variables, sin el valor discrepante y con la constante de intersección igual a cero (ecuación 7).

$$PASAJEROS = -1.438 ALTO + 2.371 MEDIO + 0.318 MUY_BAJO$$
 (7)

Se obtuvo un R² ajustado igual a 75.64 %.

En este caso, al estimar los coeficientes estandarizados, para hacerlos directamente comparables se obtuvo la relación (8).

$$PASAJEROS^* = -0.585 ALTO^* + 0.653 MEDIO^* + 0.512 MUY_BAJO^*$$
 (8)

Por otra parte, se realizó un análisis de regresión lineal simple para cada variable explicativa en forma individual. Para el grado de marginación MUY_BAJO se encontró:

$$PASAJEROS = 0.513 MUY_BAJO$$
 (9)

Con R^2 igual a 67.41 %.

Sin embargo, para el resto de las variables se estimaron valores de R^2 muy bajos. Por lo que, las regresiones lineales con grado de marginación BAJO (R^2 = 0.3844), MEDIO (R^2 = 0.2815), ALTO (R^2 = 0.000233) y MUY_ALTO (R^2 = 0.0104), no explican de manera significativa a la variable PASAJEROS en el análisis de regresión simple.

DISCUSIÓN Y ANÁLISIS DE RESULTADOS

Para delimitar las áreas de influencia, mediante los modelos de accesibilidad espacial, se requirió de una gran capacidad de cómputo para su ejecución. Se utilizó una máquina virtual con cuatro procesadores de ocho núcleos cada uno y memoria RAM mayor a 128 GB, el tiempo de ejecución de cada modelo (doméstico e internacional) fue de aproximadamente cuatro horas.

Se observó que, dentro del intervalo de dos horas, la mayor parte de la población tiene acceso al servicio aéreo doméstico e internacional, 89.6 % y 81.7 % de la población total, respectivamente.

Se detectó que el número de pasajeros atendidos anualmente en algunos aeropuertos es mayor que la población total dentro de sus respectivas áreas de influencia. En el caso del servicio nacional esto se presentó en los aeropuertos de la Ciudad de México, Cancún, Tijuana, San José del Cabo, Puerto Vallarta, Monterrey, La Paz, Zihuatanejo y Ciudad del Carmen; y en el internacional solo en Cancún, San José del Cabo, Puerto Vallarta y Cozumel.

En el caso del servicio nacional, los datos atípicos correspondieron a los aeropuertos de la Ciudad de México, Cancún y Pachuca, con un residual estandarizado positivo para los dos primeros (+ 3.744 y + 2.336, respectivamente) y negativo para el tercero (– 4.746). Esto significa que en el caso del Aeropuerto Internacional de la Ciudad de México (AICM) y Cancún los valores reales de pasajeros atendidos son mayores que los que estimó el modelo inicial, en cambio, para el aeropuerto de Pachuca sucede lo contrario. En otras palabras, el AICM y el aeropuerto de Cancún están atendiendo más pasajeros de los que explica la población incluida dentro de su área de influencia, considerando sus distintos grados de margina-

ción. Se debe recordar que uno de los supuestos para delimitar el área de influencia de cada aeropuerto fue que todos los aeropuertos ofrecían los mismos servicios, sin embargo, esto no sucede en todos los casos. De hecho, el AICM es el principal centro concentrador y distribuidor (hub) de pasajeros domésticos (Tabla 1), debido a que ofrece mayor conectividad que cualquier otro aeropuerto nacional, aunque con menor importancia en este sentido el aeropuerto de Cancún también destaca en conectividad. Esto explicaría por qué estos dos aeropuertos atienden más pasajeros que lo que estima el modelo inicial. En el caso de Pachuca con un residual estandarizado negativo, el modelo inicial indica que de acuerdo con la población comprendida dentro de su área de influencia y considerando sus distintos grados de marginación, debería atender más pasajeros. La explicación de por qué no atiende un mayor número de pasajeros, como debería, tiene que ver con su falta de conectividad aérea, la cual, a su vez, se relaciona con su cercanía al principal hub nacional (el AICM), y a que, además debe competir con los aeropuertos aledaños de Toluca, Puebla e incluso Querétaro.

En el caso del servicio internacional solo se presentó un valor atípico (+ 5.019), que correspondió al aeropuerto de Cancún. El residual estandarizado indica que el valor real de los pasajeros atendidos en este aeropuerto, es mayor que lo estimado por el modelo inicial. La explicación en este caso tiene dos vertientes, la primera se debe a que este aeropuerto es el principal hub internacional, superando incluso al AICM (Tabla 2), por lo que tiene gran conectividad con el extranjero y, de esta forma, atiende pasajeros de otras áreas de influencia de aeropuertos con menor conectividad internacional. La segunda explicación, tiene que ver con el hecho de que, al tratarse de vuelos internacionales, hay un componente de la demanda que no proviene de la zona de influencia del aeropuerto dentro del territorio nacional, sino del extranjero; y ese componente no está considerado dentro del modelo, el cual únicamente considera los grados de marginación dentro de las aéreas de influencia en México, pero no los de los aeropuertos de origen o destino en el extranjero.

En el análisis de regresión lineal simple se encontró que las mejores relaciones para explicar a la variable dependiente PASAJEROS, corresponden a la variable independiente MUY_BAJO, tanto para el servicio nacional como para el internacional.

Por otra parte, con base en la regresión lineal múltiple en el servicio nacional la mejor estimación para la variable PASAJEROS se obtuvo con las variables ALTO y MUY_BAJO; y de acuerdo con la evaluación de los coeficientes estandarizados, la variable que tuvo mayor relevancia para los pasajeros atendidos fue MUY_BAJO. En cambio, en el servicio internacional la mejor estimación se obtuvo con base en las variables ALTO, MEDIO y MUY_BAJO; y de acuerdo con los coeficientes estandarizados, la variable que tuvo mayor impacto fue MEDIO.

CONCLUSIONES

Esta es la primera vez que se estima un modelo de demanda para todos los aeropuertos nacionales considerando la accesibilidad espacial y el grado de marginación de la población, anteriormente, solo se habían desarrollado modelos regionales.

Los modelos para determinar la demanda de pasajeros para cada aeropuerto en función de la población clasificada, de acuerdo con su grado de marginación, quedaron definidos por las ecuaciones 5 y 7, para los servicios domésticos e internacionales, respectivamente. Sin embargo, se debe tener presente que en algunos aeropuertos otras características no consideradas pueden modificar las estimaciones, lo que abre las posibilidades de mejora para estudios futuros. Aún con todo, los modelos obtenidos brindan una aproximación para estimar la demanda de pasajeros, el modelo para el servicio nacional explica un 64.74 % de la variabilidad de los datos y 75.64 % en el servicio internacional.

En el servicio nacional, de acuerdo con su ubicación y características de población, el aeropuerto de Pachuca presenta potencial para incrementar sus servicios. De esta forma, atendería la demanda potencial que tiene y que es atendida en otros aeropuertos cercanos. Para ello, se debe incentivar la utilización de sus servicios, por ejemplo, incrementando su conectividad aeroportuaria.

AGRADECIMIENTOS

Los autores agradecen el apoyo brindado por el Instituto Mexicano del Transporte. El proyecto fue realizado dentro del Laboratorio Nacional CONACYT en Sistemas de Transporte y Logística. También, se reconocen el apoyo y las valiosas aportaciones de la Licenciada María Fernanda Flores Juárez, de la carrera en Matemáticas Aplicadas, por la Universidad Autónoma de Querétaro.

REFERENCIAS

CONAPO. (2011). Consejo Nacional de Población. 1a edición. Obtenido de índice de marginación por entidad federativa y municipio 2010. Recuperado de http://www.conapo.gob.mx/es/CONAPO/Indices de Marginacion 2010 por entidad federativa y municipio

- DGAC. (2010). Dirección General de Aeronáutica Civil. Obtenido de estadística mensual por origen-destino. Recuperado de http://www.sct.gob.mx/transporte-y-medicina-preventiva/aeronautica-civil/5-estadísticas/53-estadística-operacional-de-aerolineas-traffic-statistics-by-airline/estadística-historica-1992-2017-historical-statistics-1992-2017/
- González, J. (2007). Cálculo de la accesibilidad espacial con base en el transporte terrestre a través de un SIG. Tesis. Universidad de Girona, España.
- Herrera, A. et al. (2014). Diagnóstico del transporte aéreo comercial en el estado de Oaxaca. Publicación Técnica, (421). Querétaro, México: Instituto Mexicano del Transporte.
- IMT/SCT. (2010). Instituto Mexicano del Transporte/Secretaría de Comunicaciones y Transportes. Obtenido de red nacional de caminos. Recuperado de https://www.gob.mx/imt/accionesy-programas/red-nacional-de-caminos
- INEGI. (2018a). Instituto Nacional de Estadística y Geografía. Obtenido de marco geoestadístico nacional. Recuperado de

- http://www.inegi.org.mx/geo/contenidos/geoestadistica/m_geoestadistico.aspx
- INEGI. (2018b). Instituto Nacional de Estadística y Geografía. Obtenido de modelo digital de elevación. Recuperado de http://www.beta.inegi.org.mx/temas/mapas/relieve/continental/
- Lakew, P. (2015). Airport traffic and metropolitan economies. Determinants of passenger and cargo traffic. *Transportation Research Record: Journal of the Transportation Research Board*, 2471, 58-72.
- Profillidis, V. & Botzoris, G. (2015). Air passenger transport and economic activity. *Journal of Air Transport Management* (49), 23-27.
- SENEAM. (2018). Servicios a la navegación en el espacio aéreo mexicano. Publicación de Información Aaeronaútica. Enmienda 04/18. México: SCT.
- Valdes, V. (2015). Determinants of air travel demand in middle income countries. *Journal of Air Transport Management* 42, 75-84.