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Abstract
Currently, wireless communication networks have been acquired great relevance in our daily life, including data acquisition, data 
processing, control and analysis in different applications. Therefore, robotic systems cannot be an exception, in such a way, it is an 
important study that considers the effects caused by inclusion of wireless networks in the control loop of robotic systems, as well as, 
the designing of intelligent control systems that can deal with such effects in real-time. Hence, this research work focuses on the de-
signing of an on-line intelligent controller that achieves trajectory tracking of a robotic mobile system which is in a networked com-
munication environment. The proposed controller can deal with unknown dynamics, unknown external and internal disturbances, 
unknown communication delays and packet losses. Such a controller is designed using a discrete-time approach based on an inverse 
optimal control methodology for trajectory tracking and a recurrent high-order neural network identifier. Applicability of the propo-
sed scheme is shown through real-time results using a tracked robot platform controlled through a wireless network under different 
network scenarios. Besides, obtained results, show good performance. The designed scheme can be extended to any unknown or 
uncertain nonlinear system which lies in a networked environment. One of the main advantages of the proposed scheme is the ro-
bustness of the proposed intelligent controller to work on networked environments under direct communication channels, as well as 
through two different communication channels, evidently for more complex configurations of the used communication channel, the 
performance of the proposed scheme can be deteriorated. 
Keywords: Neural networks, networked control system, cyber-physical systems, time delay, tracked robot.

Resumen
Actualmente, las redes de comunicación inalámbricas han adquirido gran relevancia en nuestra vida diaria, incluida la adquisición 
de datos, su procesamiento, el control y el análisis de datos, en diferentes aplicaciones. Así pues, los sistemas robóticos no pueden 
ser una excepción, por lo que es importante y relevante estudiar los efectos causados por la inclusión de redes inalámbricas en el lazo 
de control de sistemas robóticos, así como el diseño de sistemas de control inteligentes que pueden manejar tales efectos en tiempo 
real. Por tanto, este trabajo de investigación se centra en el diseño de un controlador inteligente en línea que logra el seguimiento de 
la trayectoria de un sistema móvil robótico que se encuentra en un entorno de comunicación en red. El controlador propuesto pue-
de manejar dinámicas desconocidas, saturación de los actuadores, perturbaciones externas e internas desconocidas, retrasos de co-
municación desconocidos y pérdidas de paquetes. Dicho controlador está diseñado utilizando un enfoque de tiempo discreto 
basado en un control óptimo inverso y un identificador neuronal de alto orden recurrente. La aplicabilidad del esquema propuesto 
se muestra a través de resultados en tiempo real utilizando una plataforma de robot tipo oruga, controlada a través de una red ina-
lámbrica bajo diferentes escenarios de la red. Además, los resultados obtenidos, muestran un buen desempeño. El esquema diseña-
do puede extenderse a cualquier sistema no lineal desconocido o incierto que se encuentre en un entorno de red. Una de las 
principales ventajas del esquema propuesto es la robustez del controlador inteligente para trabajar en entornos de red bajo canales 
de comunicación directa, así como a través de dos canales de comunicación diferentes, evidentemente entre más compleja sea la 
configuración del canal de comunicación, el desempeño del esquema propuesto puede deteriorarse.
Descriptores: Neural networks, networked control system, cyber-physical systems, time delay, tracked robot.
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IntroductIon

The contribution of Norbert Wiener has had a profound 
effect on many fields including signal processing, sys-
tems, control theory and cybernetics. He is known as the 
father of cybernetics, which, in his own words, is “the 
scientific study of control and communication in the ani-
mal and the machine (Wiener, 1961)”. Recently, cyberne-
tics has contributed tremendously to the development of 
intelligent control and the smart management of cyber-
physical systems (CPS). Examples of real-life systems 
considered as CPS are smart grids, automotive and 
transportation systems, smart healthcare, unmanned ae-
rial vehicles (UAVs), robotics, and the Internet of Things, 
among others (Lee, 2008; Rajkumar et al., 2010; Haque et 
al., 2014; Ochoa et al., 2017; Dressler, 2018; Lopez et al., 
2018; Alguliyeb et al., 2018; Do et al., 2018). 

Typically, a CPS is a smart networked system that is 
designed to interact with the physical world including 
human users; this interaction is achieved through its em-
bedded sensors, processors, and actuators (Lee, 2008; 
Rajkumar et al., 2010; Li et al., 2017). Therefore, emerging 
technical challenges arise with the rapid increase in 
functionalities, significant uncertainties and stringent re-
quirements on performance, representation, analytics, 
smart management, safety, security, flexibility and relia-
bility, modeling, analysis, control, and others; these as-
pects lead to increasingly complex CPS design (Lee, 
2008; Rajkumar et al., 2010). In this way, communication 
channels are essential for networked control in CPS, sin-
ce they provide the required information for feedback in 
the control law. Information on the physical system dy-
namics is sent to the controller by the implemented sen-
sors using the communication channels. Hence, the 
efficiency and reliability of communication channels are 
crucial to developing an adequate control to support 
real-time and trustworthy CPS applications. 

Today, Internet communication has become an es-
sential part of the modern world. The recent progress of 
communication technologies has led to extensive re-
search on the possible applications of remote-control 
technology implemented over a communication line in 
the field of control engineering (Kobayashi et al., 2017; 
Ochoa et al., 2017; Do et al., 2018). Nevertheless, a net-
worked control system is permanently affected by ne-
gative factors, which include induced time-delay and 
packets losses, typical characteristics during network 
operation. One possible solution to these issues is up-
dating the network equipment; however, this solution 
is costly. Another solution is the use of robust and relia-
ble control methodologies needed to decrease the nega-
tive impact of time-delay and packet losses. Among 

these problems, the proposed controller should address 
other common problems found in CPS, like complex 
interactions among potentially conflicting actuations, 
continuous and discrete dynamics with discrete contro-
llers, unknown and unmodeled dynamics, internal and 
external unknown uncertainties, substantial delays that 
imply reduced stability regions, unknown variable 
time delays and so on Yu et al. (2017); Kobayashi et al. 
(2017). 

In recent years, intelligent controllers, particularly 
those for neural control, have showed the ability to con-
trol complex systems subject to the abovementioned 
complications, even with no exact, incomplete or unk-
nown mathematical models of the system or if the 
application is complex; therefore, neural control is an 
obvious methodology for the modeling and control of 
CPS (Selyunin et al., 2015a & 2015b; Lv et al., 2017). In 
Jiang et al. (2016), it is presented a deep comparative 
analysis between the two main methodologies of inte-
lligent control: fuzzy and neural based controllers, then 
in Farias (2018) it is developed the same comparison 
with an applicability focused to robotics, these two 
works illustrate the great capability of intelligent con-
trollers to deal with unknown and unstructured envi-
ronments, fuzzy controllers are mainly recommended 
for their simplicity to implementation, besides, fuzzy 
controller allows the user to include known characteris-
tics of the system by a specialist which cannot be done 
with neural controllers, however, neural controllers are 
indicated in complex systems or tasks, where the desig-
ner has limited information about the system to be con-
trolled. Use of intelligent control for robotics applications 
has been deeply studied, for example in Aouf et al. 
(2019) and Tong et al. (2020) consider implementation of 
fuzzy controllers for robots, in Pillai & Suthakorn (2019) 
it is presented a compendium of challenges in motion 
control of rough terrain rescue robots. In Rios et al. 
(2017), an implementation of the NIOC scheme applied 
to a modified HD2® (HD2 is a registered trademark of 
SuperDroid Robots) is presented, such work presents 
the simulation and experimental results as well as a 
comparison of the NIOC scheme with a super twisting 
scheme. In Villaseñor et al. (2018), a germinal center op-
timization algorithm is used to find a better set of va-
lues for the NIOC scheme designed parameters for its 
implementation to the HD2®. 

The main contribution of this paper is to show how 
the NIOC scheme is capable of working in different net-
work conditions, mainly in presence of unknown de-
lays, packet losses, disturbances and uncertainties, 
without their previous knowledge. In order to illustrate 
applicability of the NIOC, three tests are presented, 
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they are implemented on real-time for a tracked robot 
platform controlled through a wireless network under 
different network scenarios: Test 1, direct communica-
tion between the computer that process signals and the 
HD2®, which sends its status through a state vector 
and receives and applies a control signal calculated by 
the computer. Test 2 and Test 3 communicate through 
two different routers connected to an inner network in 
addition to other services; the network provides Inter-
net connection services to all devices connected to it. 

In this work, the networked control strategy is des-
cribed first, and then, the analysis of robustness towards 
these negative factors is presented through experimen-
tal results. The results are shown in detail and prove 
that the proposed networked control strategy has 
strong robustness against unknown dynamics, unk-
nown external and internal disturbances, unknown 
communication delays and packet losses, the fact of the 
proposed controller deals with all the above explained 
conditions can be considered as the main strengths of 
the proposed NIOC, in this sense the main weaknesses 
and threats remains in the complexity of the proposed 
algorithm which implies the need of a robust processor 
to implement all the elements of the NIOC, what can be 
expensive, besides the implementation of this kind of 
controller requires previous knowledge of modern con-
trol strategies. 

This work is focused on the intelligent control of 
networked systems. In the first stage, the system to be 
controlled is identified by a recurrent high-order neural 
network (RHONN) identifier; then, an inverse optimal 
control (IOC) is designed based on the mathematical 
model obtained with the RHONN. The designed neural 
inverse optimal controller (NIOC) is applied in real 
time to a networked system for trajectory tracking un-
der three different scenarios. 

neural optImal Inverse control scheme

This section presents elements of NIOC scheme for 
unknown discrete-time delayed nonlinear systems. 
This scheme is composed by a neural identifier trained 
with an EKF based algorithm, this identifier provides a 
mathematical model for the unknown delayed system, 
therefore the obtained neural model is used to design a 
controller based on inverse optimality technique for 
trajectory tracking. 

First consider the following system:

x (k + 1) = f (x (k - 1) + g (x(k  - l))) u (k)                       (1)

where x ∈ ℜn is the state vector, u ∈ ℜm is the control 
input vector, and f ∈ ℜm → ℜn and g ∈ ℜn → ∈ ℜn×m are 
smooth maps.

RHONN IdeNtIfIeR

A RHONN is a generalization of the first-order recu-
rrent neural network known as the Hopfield network. 
A recurrent neural network has memory and dynamic 
behavior due to its inner feedback connections. Mo-
reover, in a RHONN, the high-order connections en-
hance the approximation capabilities, convergence, 
storage capability and fault tolerance of the neural net-
work (Haykin et al., 2004; Sanchez et al., 2008; Zhang, 
2008). The following RHONN identifier based on the 
RHONN series-parallel model is used to identify sys-
tem (1) (Alanis et al., 2016):

    i (k + 1) = ωi (k)Zi(x (k - l), u (k)), i = 1,2, ... , n (2)

Where:

    i  = i-the state variable of the neural network 
n  = state dimension 
ωi  = weight vector of     i and Zi (·) is defined as:

 (3)

x is the state vector of the system to be identified, and u 
is the input vector and the high order terms are defined 
as:

 (4)

where xi is the i-th state variable of the system (with  
i = 1, ... , n),  is the unknown system delay and uj is the j-th 
input component of system input u (with i = 1, ... , m) and

 (5)

where b > 0 and v is a variable with any real value.
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It is important to note that the RHONN identifier (2) 
does not require previous knowledge of the system mo-
del to be identified nor information of its disturbances 
and delays. 

The selected training algorithm for the RHONN 
identifier (2) is based on an extended Kalman filter 
(EKF). The EKF finds the optimal weight vector that mi-
nimizes the prediction error at each iteration, and it is 
computed between sampling time instants from the 
previous estimation and current input in an iterative 
manner. The EKF-based training algorithm (Sanchez et 
al., 2008) is:

ωi (k + 1) = ωi (k) + hi Ki (k) ei (k) 
 
Ki (k) = Pi (k) Hi (k) [Ri (k) + Hi (k) Pi (k)Hi(k)]-1  (6)

Pi (k + 1) = Pi (k) - Ki (k) Hi (k) Pi (k)+ Qi(k)

where i = 1, 2, ... , n, ωi ∈ ℜLi,  is the weight vector,  
Ki ∈ ℜLi is the Kalman gain vector, ei ∈ ℜ is the i-th iden-
tification error and Li represents the number of high or-
der terms for the i-th neural state variable. Pi ∈ ℜLi×Li is 
the weight estimation error covariance matrix,       

i  is the 
i-th state variable of the neural network, Qi ∈ ℜLi×Li is the 
estimation noise covariance matrix, Ri ∈ ℜ is the error 
noise covariance matrix and Hi ∈ ℜLi  is a vector of deri-
vatives. Then:

ei (k) = xi (k) -   i (k) (7)

where ei ∈ ℜ is the i-th identification error defined as 
the difference between the i-th state variable xi and the 
respective neural state variable     i   and Hi∈ ℜLi is a vec-
tor with entries Hij, are defined as:

                                                                                                                    (8)

where ωij is the j-th element of vector ωi. Finally, Pi and  
Qi  are initialized as diagonal matrices with entries Pi(0) 
and Qi(0), respectively.

INveRse OptImal CONtROl

The optimal control leads to a control law that minimizes 
a performance criterion. This control law is obtained 
through a process that involves the solution of a Hamil-
ton-Jacobi–Bellman (HJB) equation (Sanchez et al., 2016). 
Since solving this equation is not an easy task, an alterna-
tive is to use inverse optimal control (IOC), which avoids 

this solution. In the IOC approach, a stabilizing feedback 
control law is designed based on a priori knowledge of a 
control Lyapunov function (CLF). Then, it is established 
that the control law optimizes a cost function. Finally, 
the CLF is modified to achieve asymptotic tracking for 
given references (Sanchez et al., 2016). 

The system (1) is supposed to have an equilibrium 
point x (0) = 0. Moreover, the full state x (k) is assumed 
to be available. In order to ensure system stability of (1), 
the following control Lyapunov function is proposed:

V (z(k)) = 1/2 z (k)  P z (k)                                                                                                     (9)

Where: 

V  = candidate Lyapunov function 
P  = positive matrix such that P = P > 0  
z  = trajectory tracking error, with:

z (k) = x (k) - xd (k)                                                                                                                  (10)

where z (k) represents trajectory tracking error, which is 
the difference between system state x (k) and desired 
reference signal xd (k).

The inverse optimal control law for the system (1) 
with (9) is:

 (11)

Where: 

u (k) = control law 
R (z(k)) = R (z(k))T > 0 = matrix whose elements can be  

 functions of the system state or can be fixed
P = matrix such that the inequality (12) holds.  

 Therefore:

 (12)

where Vf is the first increment of (9) defined as:

 (13)

where z (k) defined as in (10), Q = QT > 0 is a gain matriz, 
P is defined as in (9) and RP (z(k))  is defined as:                         
                                                 
RP(z(k)) = R(z(k)) + P2(z(k)) (14)
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with P1 and P2 functions of g (·), defined as:

 (15)
 

(16)

The globally asymptotic stability of the control law (11) 
is demonstrated in (Sanchez & Ornelas, 2016).

NeuRal INveRse OptImal CONtROl fOR uNkNOwN  
delayed systems

Control law (11) need the complete knowledge of 
mathematical model (1), however in this paper we con-
sider the problem to control unknown discrete-time de-
layed systems, therefore to solve this problem it is used 
the neural identifier (2) to obtain a mathematical model 
of system (1), therefore control law (11) is designed 
using (2) then, inverse optimal control based on a neu-
ral model is called NIOC and the whole scheme is de-
picted in Figure 1.

dIscussIon and results

The following results were obtained using a modified 
HD2® all-terrain tank robot (Figure 2). The modification 
consists of a replacement of the original board for a sys-
tem based on two Arduino® (Arduino is a registered 
trademark of Arduino LLC), boards and a wireless rou-
ter. All other parts of the HD2 remained unmodified.

For the implementation of the presented identifier-
control scheme, the mathematical model of the HD2® 
robot is not needed, and the RHONN identifier provi-

des the model. This implementation is achieved by 
adapting RHONN’s weight vectors using the error bet-
ween its output and its inputs, which are the measured 
signal from the robot. For reference, a mathematical 
model of an all-terrain tracked robot can be found in 
(Rios et al., 2017), such model is not necessary to design 
RHONN, however it can be used as a guide.

test 1: wIReless CONNeCtION tO tHe all-teRRaIN  
tRaCked RObOt

Test 1 description: The computer that processes the sig-
nals and computes the control signal u is connected via 
wireless communication to the router mounted in the 
HD2®. The HD2® system sends the information of the 
measured state variables to the computer using TCP/IP 
protocol. At the time the controller starts, a command 
prompt (CMD) window with a ping loop to the HD2® 
is initialized to record the network behavior with res-
pect to time (Figure 4) in addition to testing the ability 
of the source computer (the HD2®). A visual representa-
tion of Test 1 is presented in Figure 3.

Figures 5, 6 and 7 show the comparison of the real 
measured signals (blue), identified signals (orange) and 
reference signals (yellow) for position x, position y and 
position θ, respectively. In these figures, the blue mea-
sured real signals are not visible because they are cove-
red by the orange identified signals, visually showing 
that the errors between them are close to zero. Mean-
while, the errors between the position signals and their 
references are not zero; however, they are small and 
bounded.
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Figure 2. HD2® All-Terrain Tracked Robot 
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Figure 4. Ping record of Test 1. Ping statistics: Packets:  
Sent = 64, Received = 64, Lost = 0 (0 % Loss). Approximate 
round trip in milliseconds: Minimum = 0 ms, Maximum = 83 ms, 
Media = 6 ms. Please note that in the graphic values of zero 
represent results of less than 1 ms

Figure 2. HD2® All-Terrain Tracked Robot

Figure 3. Graphical description of Test 1

Figure 6. Comparative graph between the measured real 
position y, the identified    and reference yd of Test 1ŷ

Figure 5. Comparative graph between the measured real 
position x, the identified   and reference xd of Test 1x̂
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Table 1 shows the identification root mean square errors 
(RMSEs) for all state variables of the HD2®. Moreover, 
Table 2 shows the tracking RMSEs, which are calcula-
ted from the identified signals and the reference sig-
nals.

Table 1. Identification RMSE of Test 1

RMSE

Position x 0.001865 m

Position y 0.001577 m

Position θ 0.005342 rad

Velocity v1 0.036624 m/s

Velocity v2 0.038498 m/s

Current i1 0.131179 A

Current i2 0.125383 A

Table 2. Tracking RMSE for Position x, Position y and Position θ 
of Test 1

RMSE

Position x 0.026473 m

Position y 0.030891 m

Position θ 0.072156 rad

The control signals of Test 1 are shown in Figures 8 and 9.

Figure 8. Control signal u1 of Test 1

Figure 9. Control signal u2 of Test 1

test 2: COmmuNICatION tO tHe all-teRRaIN  
taNk RObOt tHROugH dIffeReNt ROuteRs

Test 2 description: The computer that processes the sig-
nals and computes the control signal u is connected via 
wireless communication to a router connected to an in-
ner network. The router mounted in the HD2® is also 
connected to the same network. 

The HD2® system sends the information of the mea-
sured stated variables to the computer designated IP 
address, and the computer responds to the designated 
IP address for the HD2® using TCP/IP protocol. Similar 
to Test 1, at the time the controller starts, the CMD win-
dow initializes a ping loop to the HD2® to record the 
behavior of the network with respect to time (Figure 
11). A visual representation of Test 2 is presented in Fi-
gure 10.

Figures 12, 13 and 14 show the comparison of real 
measured signals (blue), identified signals (orange) and 
reference signals (yellow) for position x, position y and 
position θ, respectively. In these figures, similar to Test 
1, the blue measured real signals are covered by the 

Figure 7. Comparative graph between the measured real 
position θ, the identified    and reference θd of Test 1θ̂
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Figure 10. Graphical description of Test 2 and Test 3

Figure 11. Ping record of Test 2. Ping statistics: Packets:  
Sent = 61, Received = 61, Lost = 0 (0 % Loss). Approximate 
round trip in milliseconds: Minimum =1 ms,  
Maximum = 63 ms, Media =6 ms

Figure 12. Comparative graph between the measured real 
position x, the identified    and reference xr of Test 2x̂

Figure 13. Comparative graph between the measured real 
position y, the identified    and reference yr of Test 2ŷ

Figure 14. Comparative graph between the measured real 
position θ, the identified    and reference θr of Test 2θ̂

Table 3. Identification RMSE of Test 2

RMSE

Position x 0.002336 m

Position y 0.000807 m

Position θ 0.001393 rad

Velocity v1 0.034999 m/s

Velocity v2 0.031415 m/s

Current i1 0.129143 A

Current i2 0.124773 A
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orange identified signals, showing a close to zero iden-
tification error, and the tracking error between position 
signals and their references is small and bounded.

Table 3 shows the identification RMSEs for all the 
state variables of the HD2®. Moreover, Table 4 shows 
the tracking RMSEs, which are calculated from the 
identified signals and the reference signals.

Table 4. Tracking RMSE for Position x, Position y and Position θ 
of Test 2

RMSE

Position x 0.037489 m

Position y 0.018244 m

Position θ 0.016095 rad

The control signals of Test 2 are shown in Figures 15 
and 16, respectively.

Figure 15. Control signal u1 of Test 2

Figure 16. Control signal u2 of Test 2

test 3: COmmuNICatION tO tHe all-teRRaIN taNk  
RObOt tHROugH dIffeReNt ROuteRs

Test 3 description: Test 3 is conducted in the same way 
as Test 2. The difference between these two tests is the 
network behavior. This difference can be seen by com-
paring Figure 11 and Figure 17. It is a fact that the ping 
loop and the control systems are different programs; 
however, it has to be noted that they are interacting at 
the same time with the same devices. Figure 17 shows 
lost packets, which could be an indicator that in those 
moments, the network was more stressed.

Figure 17. Ping record of Test 3. Ping statistics:  
Packets: Sent = 58, Received = 56, Lost = 2 (3 % Loss). 
Approximate round trip in milliseconds: Minimum = 1 ms, 
Maximum = 69 ms, Media = 8 ms

Figures 18, 19 and 20 show the comparison of real mea-
sured signals (blue), identified signals (orange) and refe-
rence signals (yellow) for position x, position y and 
position θ, respectively. In these figures, similar to Tests 
1 and 2, the blue measured real signals are covered by 
the orange identified signals, showing a close to zero 
identification error, and the tracking error between posi-
tion signals and their references is small and bounded.

Figure 18. Comparative graph between the measured real 
position x, the identified   and reference xr of Test 3x̂
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Figure 19. Comparative graph between the measured real 
position y, the identified    and reference yr of Test 3

Figure 20. Comparative graph between the measured real 
position, the identified    and reference θr of Test 3

Table 5 shows the identification RMSEs for all the state 
variables of the HD2®. Moreover, Table 6 shows the 
tracking RMSEs, which are calculated from the identi-
fied signals and the reference signals.

Table 5. Identification RMSE of Test 3

RMSE

Position x 0.001928 m

Position y 0.000849 m

Position θ 0.001132 rad

Velocity v1 0.028340 m/s

Velocity v2 0.028681 m/s

Current i1 0.130951 A

Current i2 0.125594 A

Table 6. Tracking RMSE for Position x, Position y and Position θ 
of Test 3

RMSE

Position x 0.028207 m

Position y 0.013445 m

Position θ 0.011452 rad

The control signals of Test 3 are shown in Figures 21 
and 22, respectively.

Figure 21. Control signal u1 of Test 3

Figure 22. Control signal u2 of Test 3

dIscussIon

Results presented in Sections 3.1, 3.2 and 3.3 show the 
effectiveness of the NIOC for trajectory tracking of unk-
nown discrete-time nonlinear systems subject to uncer-
tainties, disturbances, delays and packet losses, without 
the need of previous knowledge of models nor bounds. 

ŷ

θ̂
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As has been stated in Section 1, there are a lot of similar 
works reported in literature, however, most of them 
only have been tested with simulations, results presen-
ted in this paper are implemented in real-time for an 
all-terrain tracked robot controlled using a wireless net-
work with all the communication problems that can be 
encounter in a real-life scenario. In Villaseñor et al. 
(2018) it is reported a NIOC for the same kind of system 
without consider communication problems, then the 
proposed NOIC represents an improvement of pre-
vious results considering communication problems in-
troduced by the network which is a common trouble 
nowadays.

In this way, intelligent controllers can be a solution 
to alleviate this kind of problems, in fact fuzzy contro-
llers have been used to deal with control of uncertain 
nonlinear systems (Aouf et al., 2019; Tong el al., 2020; 
Pillai & Suthakorn, 2019), however as has been stated in 
Jiang et al. (2016) neural controllers are better suited to 
deal with complex control task. Then it is important to 
remark that the use of RHONN to identify the system 
to be controlled allow us to use any modern control ap-
proach to deal with complex control problems as real-
time trajectory tracking, this cannot be done with other 
intelligent controllers like fuzzy systems (Jiang et al., 
2016).

Then in order to perform a fair comparison of the 
proposed controller with respect to another well-esta-
blished controller that is designed with a state-space 
representation, that does not require previous knowled-
ge of the exact mathematical model of the system to be 
controlled, we implement the real-time trajectory trac-
king problem for the same robot with super twisting 
methodology (Rios et al., 2017; Levant, 2011), trajectory 
tracking results are presented in Table 7. These results 
are obtained without any network problems due to this 
methodology do not allow us to handle this kind of 
problems, this issue has been encountered for the real-
time implementation and they are mainly due to the 
chattering problem associated to sliding mode contro-
llers, besides problems produced by communication 
networks do not depend of the system state therefore 
they cannot be compensated by the sliding mode con-
troller. Then, the NIOC represents a better response for 
the problem considered in this paper. 

Table 7. Tracking RMSE for Position x, Position y and Position θ.

RMSE NIOC Super Twisting

Position x 0.0093 m 0.03600 m

Position y 0.0069 m 0.08505 m

Position θ 0.0056 rad 0.0103 rad

This paper only considers uncertainties, disturban-
ces, delays, and packet losses, while CPS have a lot of 
problems that are not considered here as: Saturation, 
hysteresis, backlash, friction, intrusions, attacks, faults 
and many others, all of them requires attention indivi-
dually and as a whole system, therefore all this issues 
can be considered as future work, as well as implemen-
tation issues that require our attention in order to redu-
ce time and cost for real-time applications.

conclusIon

This work presents the designing and implementation 
of an intelligent controller to solve on-line trajectory 
tracking problem of a mobile robotic system in a wire-
less networked environment. It is important to note, 
that the tests presented in this work show the perfor-
mance of the NIOC scheme applied to a HD2® all-te-
rrain robot for different network conditions, first in a 
direct wireless communication channel, and then, in a 
wireless environment with two networks. Real-time re-
sults, show that the identification performance presents 
errors close to zero and that the tracking performance 
presents small and bounded errors despite uncertain-
ties, unknown dynamics, delays and packet losses. It is 
important to note that results are obtained without 
knowledge of the mathematical model of the HD2®, 
which is based on the RHONN identifier model; the 
control is calculated using the neural network model. 
In this way, the tests show how the NIOC scheme is 
presented as a good candidate for its robustness against 
unknown dynamics, unknown external and internal 
disturbances, unknown communication delays and 
packet losses.
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